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Summary: In this paper, we propose an ANP framework for group decision-making problem with 
incomplete information. The proposed method consists of three parts, namely, aggregation of weights of 
alternatives, aggregation of weights of criteria and evaluation of global weights. In aggregating weights 
of alternatives, we calculate group weights from individual weights, which have been calculated by some 
AHP, by using a quadratic programming problem. In aggregating the weights of criteria, we obtain the 
weights for each alternative by using the geometrical average method for pairwise comparison matrices 
of decision-makers only who evaluate the alternative. Then the weights of criteria may be different in 
each alternative. Hence, we use the supermatrix method of ANP for evaluating global weights. A small 
numerical example shows that our proposed framework enables us to obtain the global weights of a 
group decision-making problem with incomplete information.  

 
 

1. Introduction 
 

The AHP (Analytic Hierarchy Process), proposed by Saaty (1980), is one of decision making models 
which consists of three parts, namely, making hierarchy structure of the problem, evaluating local 
weights by pairwise comparison and evaluating the global weights by additional sum. An AHP has been 
widely used because it can deal with unquantifiable objects and its implementation is very easy. In some 
practical decision problem, it seems to be the case where local weights of criteria are different for every 
alternative. An AHP has a difficulty to treat such a case because an AHP uses the same local weights of 
criteria for each alternative. 
 
To overcome this difficulty, Saaty (1996) proposed an ANP (Analytic Network Process). An ANP 
permits to use different weighs of criteria for alternatives. But in this case, global weights cannot be 
evaluated by additive sum as in AHP, and hence, Saaty introduced a so-called supermatrix and he 
proposed that global weights are the eigenvector corresponding to the maximum eigenvalue of a 
supermatrix. When all local weight vectors of criteria are same, an ANP is known to reduce to an AHP. 
Therefore, an ANP includes an AHP as a special case and has ability to treat more various decision 
problems than AHP. Decision problems seen in companies and politics tend to be large and complicated, 
and more than one decision-makers often must participate to decide. Both an AHP and an ANP are the 
method supporting for personal decision-making, and it has been required to extend these two methods to 
supporting group decision-making problems. 
 
Various modifications of AHP, such as the geometrical average method, the interval AHP (Yamada et al., 
1997) and the stress method (Nakanishi and Kinoshita, 1999), have been proposed for group decision-
making problem. In these methods, each decision-maker first makes his/her pairwise comparison 
matrices, next these matrices are aggregated to group pairwise comparison matrices, and then global 
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weights of group are evaluated by an eigenvector method. However, in the group decision-making, there 
may often be the case that all decision makers do not necessarily evaluate all alternatives. This case is 
called incomplete information (Harker 1987) and pairwise comparison matrices have some blanks. Since 
a geometrical average method and the interval AHP assume complete pairwise comparison, they cannot 
obtain global weights for incomplete information cases. To overcome this difficulty, Yamaki and Sekitani 
have proposed the large scale AHP (Yamaki and Sekitani, 1999). In the large scale AHP, weights are 
obtained as a solution to a certain quadratic programming problem, which is equivalent to the eigenvalue 
method in some sense. 
 
In this paper, we propose an ANP framework for group decision-making problem with incomplete 
information. So far as the authors know, an ANP has not been extended to group decision-making. The 
method uses local weights of alternatives, which each decision-maker has calculated by a certain AHP, 
and group weights of criteria for each alternative are calculated from pairwise comparison matrices of 
decision makers only who evaluate the alternative. Then since the weights of criteria may be different in 
each alternative, we use the supermatrix method of ANP for evaluating global weights. 
 
This paper is organized as follows. In section 2, we explain our proposed method in detail. The method is 
applied to a small numerical example with incomplete information in Section 3. Finally in section 4, we 
conclude the method and summarize subjects of future research. 
 
 
2. Group ANP 
 
The proposed method consists of three parts, namely, aggregation of weights of alternatives, aggregation 
of weights of criteria and evaluation of global weights. In this section, we explain these three parts in 
detail. Throughout this paper, we consider the case that n decision makers, DM , 

evaluate alternatives, , under l  criteria, 

),,1( nii K=
m ),,1( mjAj K= ),,1( lkk KC = . We assume that each 

decision maker need not necessarily evaluate all alternatives, but when a decision-maker evaluates an 
alternative, its evaluation is performed under all criteria. 
 
2.1 Aggregation of weights of alternatives 
 
In the case of incomplete information, it is not easy to aggregate pairwise comparison matrices of 
decision-makers to one matrix because each comparison matrices may have blanks. Hence, each 
decision-maker is to evaluate under every criteria local weights of alternatives only which he/she can 
evaluate. We consider aggregating these local weights to local weights of the group.  
 
Let  denote a local weight of a decision-maker DM evaluating an alternative under a criterion 

. We note that a  holds whenever evaluates  and otherwise . We also remark 

that the normalization procedure ∑  is not necessarily assumed because the proposed 

aggregation method is shown to be independent of normalization methods. 
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We introduce the following bipartite graph. Two node sets consist of the set I  and 

 corresponding to decision-makers and alternatives, respectively, and the arc ( , 

{ }n,,1 K=
,i{ mJ ,,1K= } )j

Ii ∈  and Jj ∈

0>k
ija

, exists if and only if DM  evaluates , that is, the arc (  exists if and only if 

. We call this graph evaluation graph.  

i jA ), ji

(Example) We consider the case of three decision-makers and three alternatives. A decision-maker  

evaluates alternatives A  and ,  evaluates all alternatives and that DM  evaluates  and 
1DM

2A1 2A 2DM 3
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3A . Then local weights a  ,  k
j1 )2,1( =j k

ja2 )3,2,1( =j  and  k
ja2 )3,2( =j  are positive and the 

other local weights are zero. An evaluation graph of this example is shown in Figure 1. 
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Figure 1. Evaluation graph 
 
In the definition above, an evaluation graph may not be connected in the sense of graph theory. For the 
unconnected case, we recommend that local weights of alternatives are first obtained separately on each 
connected components and then, by a certain methods agreed by decision-makers, whole results are 
calculated from these weights. Therefore, in the rest of this paper, we consider only the case that an 
evaluation graph is connected. 
 
In group decision-making problems, all decision-makers do not necessarily evaluate all alternatives. 
Furthermore, if each decision-maker uses different normalization procedure of his/herself, the absolute 
values of weights are variable according to the number of alternatives evaluated by a decision-maker and 
a normalization procedure. It has been considered that an AHP is the method evaluating alternatives in a 
ratio scale rather than interval scale (Harker and Vargas, 1987). According to this, it may be desirable 
that weights of a group are selected such that the ratio of the weights for alternatives is as close as 
possible to that of individual weights. That is, if local weights of two decision-makers satisfy 

k
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k
ji aaa ′′′′ = , then it is desirable that a group weights x  also satisfies k
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Based on the above observations, we propose an aggregation method in which a group local weights 

vector of alternatives x  under a criterion k  is obtained as the solution x to the 
following quadratic programming problem: 

Tk *

( ) ,,,..

min ,

mnts

w

                    (1) 

where sgn  is a function defined as ( )⋅

0
0
0

sgn . 
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The objective function of (1) is the square sum of differences between a group weight x  and an 

individual weight a  multiplied by a modification factor w , and hence, it can be considered as a 

dissatisfaction value. 

j

k
ij i

 
When an evaluation graph is connected, the following theorem holds for the optimization problem (1). 
 
Theorem 1. When an evaluation graph is connected, the optimization problem (1) has a unique pair of 
solutions ( )** , xw . Furthermore, w  and . 0* > 0* >x
 
Remark. This theorem guarantees that, under a connected assumption, group weights are determined 
uniquely. Moreover, since modification factors w  are all positive, estimation of all decision-makers is 

necessarily reflected on aggregated group weights in some extent. Also, since group weights x  are all 

positive, there is no alternative ignored by a group. 

i

j

 
Proof of Theorem 1. To simplify the notation, we ignore the super script . We first show  and 

. It is easy to see that the problem (1) is equivalent to the optimization problem 
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where the constraint ∑  is relaxed. Hence, there exist Lagrange multipliers 
=

=
m

j
jx

1

1 λ , µ  and π such 

that solution to (1) satisfies the Karush-Kuhn-Tucker condition for (2), that is, 
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Suppose that . Then we have from (3a) that 0* =sw
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Hence, we must have a  for all 0* =jsj x Jj ∈  because  and . If there exists an arc 

 in an evaluation graph, a  holds, and hence, we have x . Thus  for all nodes 
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It follows from the same argument above that  for all nodes 0* =iw Ii ∈  adjacent to the node t . 
 
Therefore, since an evaluation graph is connected, if one of w  and  is zero,  and  

hold for all i  and 

*
i

*
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I∈ Jj ∈ . This contradicts a constraint 
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and hence, the solution to (1) satisfies  and . 0* >w 0* >x
 
Next we prove the uniqueness of he solu ion. Since the objective function of (1) is convex quadratic, if 
there is two different solutions 

t t
( )** , xw  and ( )xw, , all points between these two solutions also a 

solution to (1). Furthermore, the value of the objective function is invariable on the line passing through 
these two solutions.  
 

This can be shown as follows. If we denote ( )TTT xwz ,= , the objective function of  (1) is rewritten as 
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However, in order to hold (4) for 0 1≤≤ λ , we must have 

( ) ( ) ( ) ( ) 0**** =−−=− zzMzzzzMz TT
, 

and hence, it follows from (4) that ))1(()( ** zzfzf λλ −+=  holds for all λ . 
 
Therefore, all points included in a feasible set with on the line passing through ( )** , xw  and ( xw, )  are 

solutions to (1). However, at least one of either w  or  is zero on the boundary of the line. This 

contradicts the fact w  and shown in the first part of the proof. Thus the solution to (1) is 
unique.                                                                                                                                                 Q.E.D.  
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When relative estimate of alternatives among all decision-makers is equivalent, the relative estimate of 
group must to equal to that of every decision-makers. The next theorem guarantees this fact. 
 
Theorem 2. If local weights of individual decision-makers satisfy k
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Proof.  Under the assumption of the theorem, it is easy to see that there exist nonzero w  and  such 

that  holds for all . For such w  and , the objective function of (1) equals to 

zero, and hence, w  and  are optimal solution to (1). On the other hand, from Theorem 1, w  and 
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*
jx  is the unique solution to (1).                                  

Q.E.D. 
 
2.2 Aggregation of weights of criteria 
 
In ANP, local weights of criteria are to depend on each alternative. It is natural to consider that, in group 
decision-making, local weights of decision-makers for criteria are dependent to the set of alternatives 
evaluated by him/her. Hence, in the proposed method, first group pairwise comparison matrices of 
criteria for evaluating an alternative  are made by geometrical averages of comparison matrices of 

only decision-makers who evaluate A . Then from these matrices, the local weights of criteria are 

calculated by the maximal eigenvector method. 

jA

j

 
We again consider a group decision-making problem whose evaluation graph is shown in Figure 1. In the 
example, an alternative A  is evaluated by DM  and only. So the pairwise comparison matrix 

for estimating  is made by taking geometrical average of the pairwise comparison matrices of DM  

and  only. Also the pairwise comparison matrix for estimating  is made from the comparison 

matrices of  and . On the other hand, since all decision-makers evaluate the alternative , 

the comparison matrix for  as a group is made from comparison matrices of all decision-makers. In 
this case, the proposed method is equivalent to usual geometrical average method. 
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2.3 Evaluation of global weights 
 
By using the aggregation method of criteria proposed in the previous subsection, local weights of criteria 
may be different in each alternative. In this case, the additive sum usually used in AHP is not available to 
evaluate the global weights. So we use the supermatrix method of ANP for evaluating global weights, 
because the supermatrix method permits to use different weights of criteria for each alternative. 
 
If we denote x  as aggregated local weights of A  under a criterion C  and  as aggregated local 

weights of  for each alternative , then the supermatrix  is written by 
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In ANP, local weights of criteria are usually determined in every alternative by pairwise comparison from 
the point of view of each alternative. But if local weights of criteria for each alternative are already 
known, these local weights are permitted to use without pairwise comparison. In the proposed method, 
local weights of criteria for an alternative are determined from the pairwise comparison matrices of 
decision-makers who evaluate the alternative. So far as these weights are considered as already known 
weights, an aggregation by the supermatrix method seems to be reasonable. 
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3. Numerical example 
 
In this section, we present the results of the proposed method applied for a small example with 
incomplete information. Let consider the example such that four decision-makers ( )( )4,,1, K=iDM i  

evaluate six alternatives ( )( )6,,1, K=jAj  under two criteria ( )( )2,1, =kCk

1DM

4DM

. In Table 1, we show 

local weights of decision-makers for alternatives. In the example,  evaluates alternatives 1, 2, 3, 4 

and 6, DM  evaluates 2, 5 and 6, DM  evaluates 1 only and  evaluates alternatives 2, 3, 4 and 
5. The evaluation graph of this example is shown in Figure 2 and hence, it is connected. Hence, from 
Theorem 1, group local weights of alternative are uniquely determined. We note that, since each 
decision-maker uses different normalization procedure, the sum of local weights of decision-maker 2, 3 
and 4 do not equal to one. 

2 3

 
Table 1.  Local weights under criteria 

 

1C  1DM  2DM  3DM  4DM  
2C  1DM  2DM 3DM  4DM  

1A  0.300  0.400   
1A  0.069  0.200  

2A  0.100 0.500  0.500  
2A  0.414 0.500  1.000 

3A  0.100   0.500  
3A  0.103   1.000 

4A  0.200   1.000  
4A  0.207   0.500 

5A   0.500  0.500  
5A   1.000  0.500 

6A  0.200 0.150    
6A  0.207 0.500   

 
 

 

A1

A2

A3

A4

A5

A6

1DM

2DM

3DM

4DM

Figure 2. Evaluation graph of the example 
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Table 2 shows local weights under each criterion aggregated by the optimization problem (1). It can be 
seen from Table 1 that local weights under C  are in ratio of 3:1:1:2:2:2 for all decision-makers if all 

blanks are filled with appropriate number. From Table 2, the aggregated local weights under C  are also 
in the same ratio, and it is verified that Theorem 2 is satisfied. When  denotes the optimal value of (1), 
which can be considered as the dissatisfaction value of a group, 

1

1

D
0=D  under . This means that 

preferences of all decision-makers are same and that there is nothing dissatisfied in a group. On the other 
hand, under C , the value of D  does not equal to zero because preferences of decision-makers are 
slightly different. 

1C

2

 
Table 2.  Aggregated local weights 

 
 1x  2x  3x  4x  5x  6x  1w  2w  3w  4w  D  

1C  0.273 0.091 0.091 0.182 0.091 0.182 0.909 0.182 0.682 0.182 0 

2C  0.087 0.227 0.170 0.147 0.213 0.156 0.661 0.270 0.433 0.231 0.021 
 
Next we present pairwise comparison matrices for criteria of each decision-maker in Table 3. In this 
example, since A  is evaluated by DM  and , local weights of criteria for evaluating  in a 

group are determined from comparison matrices of  and , which is shown in Table 4. Local 
weights of criteria for each alternative can be determined in a similar way and the results are collected in 
Table 5. 

1 1 3DM
DM

1A

1 3DM

 
Table 3.  Pairwise comparison matrices of criteria 

 

1DM  1C  2C   
2DM  1C 2C  

3DM 1C 2C  
4DM  1C  2C  

1C  1 1  
1C  1 3  

1C  1 2  
1C  1 21  

2C   1  
2C   1  

2C   1  
2C   1 

 
 

Table 4.  Weights of criteria for  1A
 

1A  1C  2C  Weight of criterion 

1C  1 21× 0.586 

2C   1 0.414 
 
 

Table 5.  Weights of criteria for each alternative 
 

 1A  2A  3A  4A  5A  6A  

1C  0.586 0.551 0.414 0.414 0.551 0.634 

2C  0.414 0.449 0.586 0.586 0.449 0.367 
 

From the results of Tables 2 and 5, we have constructed a supermatrix and have calculated global 
weights. The results are shown in Table 6. In the calculation, we have used the power method written in 
(Taji et al. 1999). It is observed from Table 6 that the weight of  is largest and the group thinks of  
most important among alternatives. 

6A 6A
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4. Conclusion and future researches 
 
In this paper, we have proposed a new group decision-making model, which is available to problems with 
incomplete information. In the proposed method, local weights of alternatives are aggregated as a 
solution to a quadratic programming problem (1). Local weights of criteria are aggregated in each 
alternative. Hence weights of criteria for each alternative may be different and the supermatrix method in 
ANP is used to evaluate global weights. A small numerical example has shown that the proposed method 
can calculate global weights of the problem with incomplete information. 
 
The proposed method is considered as an extension of ANP to group decision-making problems. But this 
paper is only a starting point of this approach and we need further study for applying to practical 
decision-making problems. Some subjects of future research are following. 
 

In the proposed method, the problem (1) is used to aggregate local weights of alternatives. Some 
other methods such as stress methods (Nakanishi and Kinoshita, 1999) and large-scale AHP 
(Yamaki and Sekitani, 1999) are also available, and we need compare with these methods. 

• 

• 

• 

We use the geometrical average method to aggregate local weights of criteria. It is also needed 
to apply some other aggregation method to this part. 
In the proposed method, there are only two hierarchies, alternatives and criteria. The method 
only takes a so-called outer dependence case into account. But it is often seen in decision-
making problems that criteria have multiple hierarchical structure and that there is dependent 
relation between two or more criteria. We need an extension of this model available to treat 
these cases. 
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