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Abstract 

 

Various methods of the priority vector estimation are known in the Analytic Hierarchy 

Process (AHP). They include the classical eigenproblem method given by Thomas Saaty, 

developments in least squares and multiplicative approach, robust estimation based on 

transformation of the pairwise ratios to the shares of preferences, and other approaches. In 

this paper the priority vectors are completed with validation of data consistency, 

comparisons of vectors compatibility, and estimation of precision for matrix approximation 

by vectors. Numerical results for different data sizes and consistency show that the 

considered methods reveal useful features, are simple and convenient, capable of 

facilitating practical applications of the AHP in solving various multiple-criteria decision 

making problems. 

 

Keywords: AHP priority vector estimations, consistency measures, S-index and G-index 
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Introduction 

Analytic Hierarchy Process (AHP) is a widely used methodology and a set of methods for 

solving various problems of prioritization. Founded by Thomas Saaty and developed in 

numerous works of many authors, it is nowadays one of the main approaches for managers 

and practitioners who need to apply multiple-criteria decision making for reaching their 

goals. In this work the term AHP is used not in its whole rich entirety but in a narrower 

sense as a method of finding local priority vectors by a pairwise comparison matrix. 

Estimations of priority vectors in the AHP include the classical eigenproblem method (EM) 

proposed by Saaty (1977, 1980, 1994, 1996, 2005), the least squares (LS) solution and the 

multiplicative or logarithmic (LN) least squares described in (Saaty and Vargas, 1984, 

1994; Lootsma, 1993, 1999), and numerous other modifications (for instance, Lipovetsky, 

1996, 2009, 2013; Lipovetsky and Tishler, 1999). Particularly, priority vector robust 

estimation (RE) not prone to possible inconsistencies in pairwise judgements can be based 

on the ratio transformation to the shares of preferences and obtained by Markov chain 

modeling for steady-state probabilities (Lipovetsky and Conklin, 2002, 2015). 

The current work presents the results of comparisons between these four methods of EM, 

LN, LS, and RE using several characteristics of closeness for the obtained solutions, 

including pair correlations, the so-called Saaty compatibility index (S-compatibility) 

described in (Saaty, 2005; Saaty and Peniwati, 2007), and Garuti compatibility index (G-

compatibility) described in (Garuti, 2007; Garuti and Salomon, 2011). For different sizes 

and consistency of the matrices of judgement used in the classical AHP literature, the 

priority vectors are calculated, their compatibility indices estimated, and characteristics of 

the matrix fit by the vectors are described. In general, the explored methods are simple and 
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convenient, and can significantly facilitate practical applications of the AHP for optimum 

solutions in various problems. 

The paper is organized as follows: Section II describes the methods of priority estimation, 

Section III defines the measures of compatibility and quality of fit, Section IV discusses 

several numerical examples, and Section V concludes on the obtained results. 

II.    Priority vector estimations 

Let us briefly describe several main methods of priority vector estimations. The AHP 

pairwise priority ratios matrix in general form can be written as follows:  

                                𝐴 = (

1 𝑎12 . . . 𝑎1𝑛

𝑎21 1 . . . 𝑎2𝑛

. . . . . . . . . . . . . . . . . . . . . . . . . . .
𝑎𝑛1 𝑎𝑛2 . . . 1

).                                 (1) 

It is a Saaty matrix of pairwise judgements among n items, elicited from an expert. Each 

element aij shows a quotient of preference of the i-th item over j-th item in their comparison, 

so we have transposed-reciprocal elements 𝑎𝑖𝑗 = 𝑎𝑗𝑖
−1. A theoretical Saaty matrix of pair 

comparisons defines each ij-th element as a ratio of the unknown priorities wi and wj: 

              𝑊 = (
𝑤1/𝑤1 𝑤1/𝑤2 ... 𝑤1/𝑤𝑛

− − − − − − − − − − − − − − − −
𝑤𝑛/𝑤1 𝑤𝑛/𝑤2   ... 𝑤𝑛/𝑤𝑛

) = 𝑤 ∗ (
1

𝑤
)′.              (2)       

The vector-column w consists of the elements w1, w2,…, wn, the vector-row (1/w)’ contains 

the reciprocal values 1/w1, 1/w2,…, 1/wn, and the right-hand side of the relation (2) shows 

the outer product of these two vectors (where the prime denotes transposition). From (2), 

it is easy to find the identical relation 𝑊𝑤 = 𝑛𝑤 for the theoretical matrix and vector. For 

the obtained matrix (1) a similar relation can be presented as the eigenproblem: 

                                                       𝐴𝛼 = 𝜆𝛼 ,                                                         (3) 
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where the first eigenvector  for the maximum eigenvalue 𝜆 defines the vector of priorities. 

It is the eigenvector method EM of the classical AHP. 

Another known way is the least squares estimation for priority vector which can be 

expressed via the following eigenproblem: 

                                                 (AA’) =   .                                                       (4) 

The main vector   yields the priority vector in the LS approach. 

The third popular approach to the priority estimation is called multiplicative, or logarithmic 

technique. It can be reduced to calculating the elements of the priority vector as the 

geometric means of the elements in each row of the matrix (1): 

                                                     𝛼𝑖 = √∏ 𝑎𝑖𝑗
𝑛
𝑗=1

𝑛
  .                                               (5) 

The obtained AHP priority vectors are also standardized by the total of the elements, so a 

solution is divided by the total of all elements, and the sum of the normalized components 

equals one: 

                                              𝛼𝑖𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
= 𝛼𝑖/𝑠𝑢𝑚(𝛼𝑖) .                                   (6) 

It is the priority vector estimation in the LN approach. 

For the solution with robust estimation (RE) less prone to possible inconsistencies in the 

pairwise judgements, let us introduce a theoretical matrix of shares 

    𝑈 = (
𝑤1/(𝑤1 + 𝑤1) 𝑤1/(𝑤1 + 𝑤2) ... 𝑤1/(𝑤1 + 𝑤𝑛)

− − − − − − − − − − − − − − − −
𝑤𝑛/(𝑤𝑛 + 𝑤1) 𝑤𝑛/(𝑤𝑛 + 𝑤2)   ... 𝑤𝑛/(𝑤𝑛 + 𝑤𝑛)

),            (7) 

Each element uij in (7) is defined as i-th priority in the sum of i-th and j-th priorities: 

                         𝑢𝑖𝑗 =
𝑤𝑖

𝑤𝑖+𝑤𝑗
=

𝑤𝑖/𝑤𝑗

1+𝑤𝑖/𝑤𝑗
  .                                                        (8) 

To estimate the priority vector using the matrix (7) we write identical equalities:  
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   {

𝑤1

𝑤1+𝑤1
(𝑤1 + 𝑤1) +

𝑤1

𝑤1+𝑤2
(𝑤1 + 𝑤2)+. . . +

𝑤1

𝑤1+𝑤𝑛
(𝑤1 + 𝑤𝑛) = 𝑛𝑤1

 −  −  −  −  −  −  −  −  −  −  −  −  −  − 
𝑤𝑛

𝑤𝑛+𝑤1
(𝑤𝑛 + 𝑤1) +

𝑤𝑛

𝑤𝑛+𝑤2
(𝑤𝑛 + 𝑤2)+. . . +

𝑤𝑛

𝑤𝑛+𝑤𝑛
(𝑤𝑛 + 𝑤𝑛) = 𝑛𝑤𝑛

.         (9) 

Then with notation (8) we present the system (9) as      

     {

(𝑢11 + ∑ 𝑢1𝑗
𝑛
𝑗=1 )𝑤1 + 𝑢12𝑤2+. . . +𝑢1𝑛𝑤𝑛 = 𝑛𝑤1

 −  −  −  −  −  −  −  −  −  − 
𝑢𝑛1𝑤1 + 𝑢𝑛2𝑤2+. . . +(𝑢𝑛𝑛 + ∑ 𝑢𝑛𝑗

𝑛
𝑗=1 )𝑤𝑛 = 𝑛𝑤𝑛 

.                            (10)  

In the matrix form the system (10) can be written as: 

                      (𝑈 + 𝑑𝑖𝑎𝑔(𝑈𝑒))𝑤 = 𝑛𝑤,                                                        (11)  

where U is the matrix (7), e denotes a uniform vector of n-th order, and diag(Ue) is a 

diagonal matrix of totals in each row of matrix U.  

In the classical AHP, the pair ratios wi/wj (2) are estimated by the elicited values aij (1). 

Using aij in (8), we obtain the empirical estimates bij of the pairs’ shares: 

                                         𝑏𝑖𝑗 =
𝑎𝑖𝑗

1+𝑎𝑖𝑗
 .                                                            (12)  

This transformation of the elements of a matrix A (1) yields a pairwise share matrix B with 

the elements (12). These elements (12) are positive, less than one, and have a property 

𝑏𝑖𝑗 + 𝑏𝑗𝑖 = 1. This means that the transposed elements bij and bji are skew-symmetrical off 

the diagonal bii=0.5, so 𝑏𝑖𝑗 − 𝑏𝑖𝑖 = −(𝑏𝑗𝑖 − 𝑏𝑖𝑖). 

For empirical Saaty matrix A (1) we have the eigenproblem (3) in place of the theoretical 

relations (2). Similarly, using the empirical skew-symmetric matrix B (12) in place of 

theoretical matrix U, we represent the system (11) as the eigenproblem: 

                               (𝐵 + 𝑑𝑖𝑎𝑔(𝐵𝑒))𝛼 = 𝜆𝛼,                                                (13) 
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where α as the main eigenvector. It is the RE vector of priority, and its properties have been 

studied in the works (Lipovetsky and Conklin, 2002, 2015). 

III.    Measures of Consistency, Compatibility, and Precision 

Due to the general methodology of AHP, the so-called consistency index (CI) equals 

                                                            𝐶𝐼 =
𝜆−𝑛

𝑛−1
                                                     (14)  

where 𝜆 is the maximum eigenvalue of the matrix in the problem (3), and n is the matrix 

order. The so-called random consistency index (RI) is a constant tabulated in the AHP for 

various n, and the consistency ratio (CR) equals the following value: 

                                                            𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 .                                                     (15)  

A value CR up to 10% is considered as indicating a small inconsistency in the matrix of 

pairwise comparisons (1), so such a matrix is acceptable, otherwise, with CR>10%, the 

data could require a reviewing of the elicited judgements. 

For comparisons between the obtained solutions, several characteristics can be applied. 

Among those are the pairwise correlation between the elements of two vectors, which can 

be reduced to the expression: 

                     𝑟(𝑥, 𝑦) =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1 ∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1

=
∑ 𝑥𝑖𝑦𝑖−

1

𝑛
𝑛
𝑖=1

√∑ 𝑥𝑖
2−

1

𝑛
𝑛
𝑖=1 √∑ 𝑦𝑖

2−
1

𝑛
𝑛
𝑖=1

 ,               (16)  

where a bar above the variables denotes the mean values and those equal 1/n for the vectors 

normalized by (6). Without the items 1/n for centering (and this value is small for a bigger 

n) the measure (16) coincides with the cosine as normalized projection of one vector onto 

another one. The closer is a correlation or cosine to 1, the higher is similarity of two 

solutions. The cosine values repeat the correlations but are slightly bigger, so for a more 

conservative measure the correlation can be preferred. 
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Another good measure of closeness between two vectors is the so-called Saaty 

compatibility index (S-compatibility) described in (Saaty, 2005; Saaty and Peniwati, 2007; 

Garuti and Salomon, 2011). This index can be found as follows. For two vectors x and y of 

an n-th order, build a matrix X with its elements defined as quotients Xij=xi/xj of the 

components of the vector x, and a matrix Y with its elements defined as quotients Yij=yi/yj 

of the components of the vector y. Take the transposed matrix Y’ with the elements Y’ij=yj/yi 

and find the Hadamard element-wise product of these two matrices X*Y’, then the S-index 

is defined as the normalized total of the elements of this matrix: 

                                      𝑆 =
1

𝑛2
∑ 𝑋𝑖𝑗𝑌𝑖𝑗

′𝑛
𝑖,𝑗=1 =

1

𝑛2
∑

𝑥𝑖

𝑥𝑗

𝑛
𝑖,𝑗=1

𝑦𝑗

𝑦𝑖
 .                              (17)  

If two vectors coincide, this index equals 1. Within 10% of discrepancy, when 𝑆 ≤ 1.1, the 

vectors are considered as compatible; otherwise, when 𝑆 > 1.1, they are incompatible 

(Saaty and Peniwati, 2007). 

A further development of a compatibility measure in the so-called compatibility index G 

was proposed in (Garuti, 2007; Garuti and Salomon, 2011) where it was defined as: 

                                           𝐺 = ∑
𝑚𝑖𝑛(𝑥𝑖,𝑦𝑖)

𝑚𝑎𝑥(𝑥𝑖,𝑦𝑖)

𝑛
𝑖=1

𝑥𝑖+𝑦𝑖

2
 .                                            (18)  

Due to recommendation in (Garuti, 2007), the values G<0.9 correspond to incompatible 

vectors, otherwise the vectors are compatible. 

To check a precision of fit for the pairwise judgements by the priority vector estimate, we 

can use definition of the elements ajk as quotients of preference between each pair of j-th 

and k-th items. With a vector-column of priority estimate , we find its element-reciprocal 

vector-row (1/)’ and build their outer product by the same pattern as used in (2). With 

this outer product we find a quality of its fit for the matrix A (1). The standard error (STE) 

is a measure of the mean distance between the observed and estimated pairwise ratios: 
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                                         𝑆𝑇𝐸 = √
1

𝑛2
∑ (𝑎𝑗𝑘 −

𝛼𝑗

𝛼𝑘
)

2
𝑛
𝑗,𝑘=1   .                                   (19)  

Another convenient measure of the precision for a matrix approximation by the vectors 

outer product is the mean absolute error (MAE):  

                                         𝑀𝐴𝐸 =
1

𝑛2
∑ |𝑎𝑗𝑘 −

𝛼𝑗

𝛼𝑘
|𝑛

𝑗,𝑘=1   .                                       (20)  

The smaller are values of fit (19)-(20), the better is quality of the vector estimate. The 

measures of STE and MAE can be obtained by using in (19)-(20) only for the off-diagonal 

pairwise ratios equal or above 1 because they correspond to the elicited quotients of 

preference, and the reciprocal values below 1 are simply added in completion of the matrix 

(1) of pairwise judgements. 

Besides the characteristics of the residual mean values assessed via standard deviation (19) 

or absolute deviation (20), the quality of approximation of the pairwise judgements by the 

obtained priority vectors can be checked by a measure reminding the coefficient of multiple 

determination R2 widely used in regression analysis. As shown in (Lipovetsky, 2009) this 

coefficient can be defined via the observed and estimated paired ratios of the priorities: 

                                  𝑅2 = 1 −
𝑅𝑆𝑆

𝐸𝑆𝑆
= 1 −

∑ (𝑎𝑗𝑘−
𝛼𝑗

𝛼𝑘
)

2
𝑛
𝑗,𝑘=1

∑ (𝑎𝑗𝑘−1)
2𝑛

𝑗,𝑘=1

 .                                   (21)  

In the numerator (21) the residual sum of squares (RSS) of the estimated priority deviations 

from the elicited values is used, and the denominator is presented by the equivalent sum of 

squares (ESS) which assumes all the same preferences αj /αk ≡ 1. The coefficient (21) shows 

how much the found priorities outperform the case of absence of preferences among the 

alternatives. The better is approximation of the paired judgements by the estimated 

priorities – the closer is RSS to zero, so the coefficient of determination R2 is bigger and 
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closer to one. In absence of preferences αj/αk = 1, the numerator equals the denominator, 

and R2 = 0. For the exact fit ajk = αj/αk for all judgements, RSS = 0, and R2 = 1.  

The value R2 commonly belongs to the interval from 0 to 1, that makes it a very convenient 

measure for comparison of the priority vectors obtained by different techniques. Only 

really poor estimates can produce the residual total RSS above the value of the equivalent 

residuals ESS, and it would be indicated by the negative R2. The characteristic (21) 

corresponds to STE measure (19) of squared deviations, but it is possible to build the other 

estimates, for example, using the MAE residuals (20) as well. 

IV.    Numerical comparisons for priority estimations 

Let us consider numerical examples of the priority estimations for three classical AHP 

problems. 

Example 1: the problem of “Choosing the best home”, described in (Saaty and Kearns 

1985; Saaty and Vargas, 1994; Saaty, 1996). This matrix is also used for checking some 

new approaches in (Lipovetsky, 1996; Lipovetsky and Tishler, 1999; Lipovetsky and 

Conklin, 2002, 2015). The criteria of comparison are: 1 – size of house, 2 – location to bus, 

3 – neighborhood, 4 – age of house, 5 - yard space, 6 – modern facilities, 7 – general 

condition, 8 – financing. The matrix of pairwise comparisons A (1) for this problem is 

presented in Table 1a. 

In this example with n=8, the maximum eigenvalue (3) of the matrix in Table 1a equals 

𝜆 = 9.669. With the random consistency for this case RI=1.41, the consistency index and 

consistency ratio (14)-(15) are: 

                               𝐶𝐼 =
9.669−8

7
= 0.238,    𝐶𝑅 =

0.238

1.41
= 0.169.    .                      



 10 

A value of CR up to 10% is considered as indicating some inconsistency, so the obtained 

result of 17% can be acceptable with a reservation, when the data could require a reviewing 

of the elicited judgements, and in (Lipovetsky and Conklin, 2002) it was shown how to 

identify and to adjust the data in this case. 

Table 1a. Example 1: Choosing the best home problem. Pairwise comparison matrix. 

item 1 2 3 4 5 6 7 8 

1 

2 

3 

4 

5 

6 

7 

8 

1 

1/5 

1/3 

1/7 

1/6 

1/6 

3 

4 

5 

1 

3 

1/5 

1/3 

1/3 

5 

7 

3 

1/3 

1 

1/6 

1/3 

1/4 

1/6 

5 

7 

5 

6 

1 

3 

4 

7 

8 

6 

3 

3 

1/3 

1 

2 

5 

6 

6 

3 

4 

1/4 

1/2 

1 

5 

6 

1/3 

1/5 

6 

1/7 

1/5 

1/5 

1 

2 

1/4 

1/7 

1/5 

1/8 

1/6 

1/6 

1/2 

1 

 

Several methods of priority estimation for this data are presented in Table 1b. In its upper 

part, there are four estimates of the priority vector: the classical EM solution (3), the LS 

estimation (4), the LN technique (5), and the robust estimation RE (13). All the vectors are 

normalized by the total of their elements equals one (6). Judging by eye, all solutions are 

very similar by weights, the smallest and the biggest by importance are the age and 

financing of the house, the items 4 and 8, respectively. 

For comparison between the obtained four priority vectors we apply the measures (16)-

(18) of Correlations, S-compatibility, and G- compatibility, presented after the vectors in 

three matrices in Table 1b. Judging by correlations, all the vectors are close enough by 

their structure, and LS is a bit further from the three others. The measure of S-compatibility 

proves that the EM, LN, and RE vectors are similar, within less than the required threshold 

of 10% of S-index deviation from one. The more sensitive G-compatibility demonstrates 
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that the pair of EM and LN vectors are close with G=0.927, and two vectors LN and RE 

are close with G=0.912, which are the values above the threshold 0.9 needed for viewing 

the corresponding vectors as compatible. 

Table 1b. Example 1: Choosing the best home problem. Priority vector estimations. 

item EM LS LN RE 

1. size of house 0.173 0.199 0.175 0.150 

2. location to bus 0.054 0.100 0.063 0.054 

3. neighborhood 0.188 0.148 0.149 0.141 

4. age of house 0.018 0.017 0.019 0.022 

5. yard space 0.031 0.045 0.036 0.037 

6. modern facilities 0.036 0.065 0.042 0.041 

7. general condition 0.167 0.184 0.167 0.163 

8. financing 0.333 0.242 0.350 0.392 

Correlations     
EM 1 0.935 0.988 0.972 

LS 0.935 1 0.933 0.881 

LN 0.988 0.933 1 0.991 

RE 0.972 0.881 0.991 1 

S-compatibility     
EM 1 1.113 1.015 1.028 

LS 1.113 1 1.071 1.122 

LN 1.015 1.071 1 1.010 

RE 1.028 1.122 1.010 1 

G-compatibility     
EM 1 0.774 0.927 0.865 

LS 0.774 1 0.809 0.742 

LN 0.927 0.809 1 0.912 

RE 0.865 0.742 0.912 1 

       Precision   
STE 2.071 1.849 1.813 1.831 

MAE 1.079 1.083 0.958 0.934 

R2 0.423 0.540 0.558 0.549 

 

The last segment at the bottom of Table 1b displays the precision by (19)-(21) for each 

vector solution. By the minimum standard error STE – the best model is LN, and by the 

mean absolute error MAE – the best model is RE. The values of MAE suggest also that an 
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average deviation from the observed pair judgements evaluated by the obtained quotients 

from a priority vector is not more than one unit. The coefficient of multiple determination 

R2 in the last row of Table 1b shows by its maximum values that the models LN and RE 

outperform the other two models, though all R2 values are not high, which indicates a 

difficulty in approximation of inconsistent judgements by a priority vector in any 

estimation. 

Example 2: the problem of “Distance from Philadelphia” is one of the first AHP problems 

described by Saaty (1977). The remoteness of six cities from Philadelphia was estimated 

by the criterion: for each pair of cities, how many times farther the more distant city is 

located from Philadelphia than the nearer one is? The elicited data is presented in Table 2a. 

 

Table 2a. Example 2: Distance from Philadelphia problem. Pairwise comparison matrix. 

Airport CAI TYO ORD SFO LGW YMX 

Cairo.CAI 1 0.333 8 3 3 7 

Tokyo.TYO 3 1 9 3 3 9 

Chicago.ORD 0.125 0.111 1 0.167 0.2 2 

SanFrancisco.SFO 0.333 0.333 6 1 0.333 6 

London.LGW 0.333 0.333 5 3 1 6 

Montreal.YMX 0.143 0.111 0.5 0.167 0.167 1 

 

The maximum eigenvalue (3) in this example equals 𝜆 = 6.454. The random consistency 

for n=6 is RI=1.24, then consistency index and consistency ratio (14)-(15) are: 

                               𝐶𝐼 =
6.454−6

5
= 0.091,    𝐶𝑅 =

0.091

1.24
= 0.073 .                      

The value CR=7.3% lesser than 10% permits to conclude that the data on pair judgements 

is sufficiently consistent. 
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Table 2b presents the results of priority estimations for this example, and it is organized as 

the previous Table 1b, but with one additional column of the actual shares of distances 

known in this case.  

Table 2b. Example 2: Distance from Philadelphia problem. Priority vector estimations. 

City EM LS LN RE actual 

1. Cairo 0.262 0.254 0.260 0.239 0.278 

2. Tokyo 0.397 0.305 0.399 0.447 0.361 

3. Chicago 0.033 0.047 0.035 0.034 0.032 

4. San Francisco 0.116 0.186 0.116 0.104 0.132 

5. London 0.164 0.184 0.163 0.147 0.177 

6. Montreal 0.027 0.024 0.027 0.029 0.019 

Correlations     
EM 1 0.943 1.000 0.990 0.991 

LS 0.943 1 0.941 0.898 0.973 

LN 1.000 0.941 1 0.991 0.990 

RE 0.990 0.898 0.991 1 0.962 

actual 0.991 0.973 0.990 0.962 1 

S-compatibility     
EM 1 1.064 1.000 1.009 1.024 

LS 1.064 1 1.064 1.106 1.045 

LN 1.000 1.064 1 1.008 1.027 

RE 1.009 1.106 1.008 1 1.060 

actual 1.024 1.045 1.027 1.060 1 

G-compatibility     
EM 1 0.821 0.993 0.900 0.914 

LS 0.821 1 0.820 0.753 0.854 

LN 0.993 0.820 1 0.905 0.908 

RE 0.900 0.753 0.905 1 0.823 

actual 0.914 0.854 0.908 0.823 1 

Precision     
STE 1.390 1.340 1.333 1.523 2.295 

MAE 0.696 0.862 0.686 0.790 1.012 

R2 0.794 0.809 0.810 0.753 0.438 

 

We see that in general the vectors are similar and each one makes sense as proportionally 

scaled distances from Philadelphia to other cities in the USA, as well as to other countries 

and continents. The pair correlations also show that the vectors are closely related to the 
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actual distances, and the same is supported by S-compatibility index. G-compatibility 

indicates that EM and LN vectors are compatible with the actual shares of distances. The 

precision of the reproduction of the judgement matrix is high, especially by the LS and LN 

methods. Precision measured by STE, MAE, and R2 of the actual distances is the worst one 

within the other values in the last rows of Table 2b. It means that the pair judgements on 

distances correspond rather to the priority vectors than to the actual distance shares. 

Therefore, in this data we do not need to use the actual data in considering compatibility 

among the vectors. 

Example 3. The data for this problem is given in (Whitaker, 2007) where the area of five 

geometric figures were compared – see the matrix of pair judgements in Table 3a. 

Table 3a. Example 3: Geometric figures’ area problem. Pairwise comparison matrix. 

figure Circle Triangle Square Diamond Rectangle 

Circle 1 9 2.5 3 6 

Triangle 0.111 1 0.2 0.286 0.667 

Square 0.4 5 1 1.7 3 

Diamond 0.333 3.5 0.588 1 1.5 

Rectangle 0.167 1.5 0.333 0.667 1 

 

The maximum eigenvalue of this matrix is 𝜆 = 5.026. The random consistency for n=5 is 

RI=1.12, so consistency index and consistency ratio (14)-(15) equal the following values: 

                               𝐶𝐼 =
5.026−5

4
= 0.006,    𝐶𝑅 =

0.006

1.12
= 0.006 .                      

The CR=0.6% proves a very high level of consistency of this data. It can be explained by 

the used pairwise ratios where not only the integer numbers but also the rational numbers 

(like 2.5 or 3.5) were permitted in the preference evaluation. 
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Table 3b presents the priority estimation results for this example, and it is organized as 

Table 2b, with the additional column of the actual shares of the areas measured for these 

figures. 

 Table 3b. Example 3: Geometric figures’ area problem. Priority vector estimations. 

 EM LS LN RE actual 

1. Circle 0.488 0.464 0.487 0.496 0.470 

2. Triangle 0.049 0.050 0.049 0.049 0.050 

3. Square 0.233 0.248 0.233 0.225 0.240 

4. Diamond 0.148 0.159 0.148 0.147 0.140 

5. Rectangle 0.082 0.078 0.082 0.083 0.090 

Correlations     
EM 1 0.998 0.999 0.999 0.999 

LS 0.998 1 0.998 0.995 0.998 

LN 0.999 0.998 1 0.999 0.999 

RE 0.999 0.995 0.999 1 0.998 

actual 0.999 0.998 0.999 0.998 1 

S-compatibility     
EM 1 1.003 1.000 1.000 1.003 

LS 1.003 1 1.003 1.004 1.007 

LN 1.000 1.003 1 1.000 1.003 

RE 1.000 1.004 1.000 1 1.003 

actual 1.003 1.007 1.003 1.003 1 

G-compatibility    
EM 1 0.948 0.999 0.982 0.955 

LS 0.948 1 0.948 0.931 0.953 

LN 0.999 0.948 1 0.982 0.956 

RE 0.982 0.931 0.982 1 0.940 

actual 0.955 0.953 0.956 0.940 1 

Precision     
STE 0.253 0.195 0.253 0.289 0.279 

MAE 0.145 0.110 0.145 0.162 0.165 

R2 0.987 0.992 0.987 0.983 0.985 

 

All the vector estimates in this data look practically coinciding, the pair correlations are 

very high, and both S- and G- indices prove compatibility among the estimates and with 

the actual observations. The precision measured by STE, MAE, and R2 characteristics 
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demonstrates a high quality of the data fit by any of the estimated vectors of priority and 

by the actual values as well. 

V.    Conclusions 

The paper considered several methods of priority vector evaluation in the AHP. They 

include the classical eigenproblem method, least squares, multiplicative or logarithmic 

approach, and a robust estimation based on transformation of the pairwise ratios to the 

shares of preferences. Together with estimation of the vectors, validation of data 

consistency and comparison of vectors by correlations, S- and G- compatibility indices 

were completed too. Numerical results for different data sizes and consistency indices 

demonstrate that all the methods produce compatible results for the consistent data, 

otherwise a discrepancy between different methods of the priority estimation could be 

observed. Therefore, the data consistency should be always proved before the vector 

evaluation. 

Another important conclusion concerns the precision assessment for the data matrix 

approximation by the obtained priority vectors. Any regular statistical modeling requires a 

verification of the produced results by some quality characteristics. For example, in 

regression analysis, such measures as the residual standard error STE, mean absolute error 

MAE, and coefficient of multiple determination R2 are commonly employed. Applying 

them in the AHP environment can enrich the evaluation and interpretation of the results on 

priority modeling, and it is demonstrated on the numerical estimations performed in the 

paper. For instance, in the data of Example 1 with a low consistency, the R2 values are also 

not high which indicates a difficulty of approximation of inconsistent judgements by a 

priority vector in any estimation, and by MAE values a mean deviation of the quotients of 
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a priority vector’s elements from the observed pair judgements could be as big as one unit. 

In Example 2 with a good consistency, the precision of the reproduction of the judgement 

matrix by the found priority vectors is high enough, although at the same time the actual 

distances occurred to yield the worst vector for approximation of the elicited pairwise 

priority matrix Thus, in this data we should not use the actual data on distances in checking 

its compatibility with the obtained estimates of the vectors. Example 3 with a perfect 

consistency yields all the vectors of high compatibility, and of a great quality of the elicited 

judgements reconstruction by each vector’s quotients of preference. 

Resuming, the considered methods of priority vector estimation and characteristics of their 

quality are convenient and helpful in practical applications of the AHP for solving various 

multiple-criteria decision making problems. 

 

Acknowledgement: I am grateful to three reviewers which comments improved the work. 
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