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Abstract

In ANP row sensitivity as defined in [?] the standard family of row
perturbations FW,r,p0(p) has an arbitrary choice of fixed point p0. Which
value one chooses here changes the results of the various calculations quan-
titatively (if not qualitatively). There is, however, a natural choice for the
fixed point. This natural choice makes the graph of a given alternative
differentiable. This gives, for instance, a unique marginal influence (see
[?]) value (instead of upper and lower values).

1 Introduction

ANP row sensitivity seeks to mimic the behavior of AHP tree sensitivity (where
one changes the local priority of a node and re-synthesizes, to arrive at new
values for the alternatives). In software this is typically done via a user interface
where one can grab a bar representing the local priority of the given node and
drag it out longer or shorter (and the rest of it’s siblings’ priorities change
accordingly) and one can see the alternative scores change.

Nothing in the previous statement is unique to trees, and thus this algo-
rithm could be applied to ANP networks. In fact it has been in the software
SuperDecisions version 1 (in a more primitive user interface than the one de-
scribed above). However, very often one gets very little sensitivity as a result of
these calculations. This is because one is only changing the local priority of the
given node. In trees a node only ever has one local priority. In networks a node
may have many local priorities. As a result of this, and feedback within the
network, often times one never sees any useful sensitivity from this calculation.

ANP row sensitivity as defined in [?] remedies this by changing the entire
row of the supermatrix corresponding to the given node (rather than a single
entry in the supermatrix, which is what the above corresponds to). In so doing
we must be careful how we perturb the supermatrix, so as to maintain as much
of the original ANP structure as possible. As a result of those rules we are
left with essentially one parameter p0, called the fixed value of the family. This
parameter value corresponds to leaving the supermatrix unchanged. We are free
to choose any value for this between 0 and 1 (exclusive).

The question naturally arises, is there a natural value of p0 to choose? Set-
ting p = 0.5 has a charm to it, in that for values above 0.5 the node’s priority
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goes up and below 0.5 the value goes downward. However using p0 = 0.5 does
not correspond well with the tree analogy (translating the tree analogy to this
terminology, the standard calculation used is equivalent to having p0 equal to
the local priority). We do not have a single local priority to use (in the ANP
case), but we could use the average of the local priorities, or the global priority
perhaps. All of these have a failing that the graphs of the alternatives scores
with respect to the parameter p will not in general be differentiable at p0 for
these choices (in the tree analogy we do have differentiability everywhere). The
question is, is there a choice of p0 that gives differentiability of the alternative
score functions?

In this paper we find that there is not a single unique value for p0 with
this behavior (for all alternatives). However, there are fixed point values p0 =
ρ0,i that make the graph of alternative i differentiable at p0 (up to a minor
assumption on the graph of the alternative score). Before we get to this result,
let us quickly review ANP row sensitivity, and see an example of on the non-
differentiability issue.

1.1 ANP Rows Sensitivity Review

The following is a brief review of the concepts involved in [?]. The purpose of
ANP row sensitivity is to change all of the numerical information for a given
node in a way that is consistent with the ANP structure, and recalculate the
alternative values (much as tree sensitivity works). We do this by having a sin-
gle parameter p that is between zero and one, which represents the importance
of the given node. There is a parameter value p0 (called the fixed point) which
represents returning the node values to the original weights. For parameter val-
ues larger than p0 the importance of the node goes up, and for parameter values
less than p0 the importance of the node goes down. Once the parameter is set,
this updates values in the weighted supermatrix (although it can also be done
with the unscaled supermatrix, working by clusters instead) and resynthesizes.

As can be seen from [?], there is essentially one way to do this calculation and
preserve the ANP structure of the model. In the notation of that paper, let W
be the weighted supermatrix of a single level of our model, ANP row sensitivity
constructs a family of row perturbations of W . A family of row perturbations
of W is a mapping f : [0, 1] → Mn,n([0, 1]) that gives a weighted supermatrix
f(p) for each parameter value p ∈ [0, 1]. This mapping must preserve the ANP
structure of our original supermatrix. The only real choice is what to make our
fixed point p0. Once we have chosen that, the standard formula for the family
of row perturbations of row r of W preserving the ANP structure is labeled
FW,r,p0 : [0, 1]→Mn,n([0, 1]) and is defined in the following way.

1. Leave trivial columns unchanged. A trivial column is either a zero column,
or a column with all zeroes except one entry that is one.

2. If 0 ≤ p ≤ p0 define FW,r,p0(p) by scaling the rth row by p
p0

and scaling
the other entries in the columns so as to keep the matrix stochastic.
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3. If p0 ≤ p ≤ 1 define FW,r,p0(p) by leaving alone columns of W for which
Wr,i = 0 and scaling all entries in the other columns, except for the entry
in the rth row, by 1−p

1−p0 (and change the entry in that rth row so as to

keep the matrix stochastic).

1.2 An Example Showing Non-differentiability

We use the 4node2 example model from [?] as our first example. It is a model
with 2 clusters, one criteria cluster with nodes A and B, and the alternatives
cluster with alternatives 1 and 2. The following is a table of alternative scores
at various parameter values with p0 = 0.5 doing row sensitivity of the first row.

p alt 1 alt 2

0.500000 0.388144 0.611856
0.000100 0.251839 0.748161
0.050090 0.266465 0.733535
0.100080 0.280862 0.719138
0.150070 0.295034 0.704966
0.200060 0.308983 0.691017
0.250050 0.322712 0.677288
0.300040 0.336223 0.663777
0.350030 0.349520 0.650480
0.400020 0.362604 0.637396
0.450010 0.375478 0.624522
0.500000 0.388144 0.611856
0.549990 0.451119 0.548881
0.599980 0.507641 0.492359
0.649970 0.558482 0.441518
0.699960 0.604297 0.395703
0.749950 0.645645 0.354355
0.799940 0.683001 0.316999
0.849930 0.716776 0.283224
0.899920 0.747327 0.252673
0.949910 0.774962 0.225038

The approximation for the upper and lower derivatives of alternative 1 follows
below.

upper =
.451119− .388144

.549990− .5
= 1.25975

lower =
.375478− .388144

.450010− .5
= 0.25337

Further calculations show this approximation to accurate, and thus the upper
and lower derivatives are not equal. Therefore the alternative score is not differ-
entiable with respect to the parameter p at p = 0.5. (Note: this is for p0 = 0.5.)

If we use the global priority of 0.255563 as our p0 value we get the upper
and lower derivatives of the score of alternative 1 being closer to equal. The
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upper and lower derivatives at the fixed value are:

upper = 0.49

lower = 0.42

Thus, they are still not equal.
Instead, we could try using p0 equal to the average of the row in the super-

matrix. For the first row that average is

average = (0.37500 + 0.20001 + 0.04999 + 0.33333)/4 = 0.2395825

If we use p0 = 0.2395825 and calculate upper and lower derivatives of alt 1’s
score at p0 we find

upper = 0.48

lower = 0.45

Thus again, they are not equal, and the score for alt 1 is not differentiable with
respect to the parameter p at p0.

In conclusion, none of the standard ideas for p0 values gives alternative scores
that are differentiable with respect to p at the fixed value p0. That derivative
has an important interpretation as the marginal influence, and in the current
situation we have marginal influence broken up into upper and lower marginal
influence. It would be advantageous if we could choose a value of p0 at which
upper and lower derivatives agree, so that we could have a single marginal
influence value.

In addition, the lack of differentiability of the alternative scores at p0 make
the graphs of alternative scores with respect to p have a broken appearance at
p0, which is undesirable. An image of a graph of alt 1 and alt 2’s score with
respect to p with p0 = 0.5 can be found in Figure ?? and one can see the break
in the graphs at p0.

The remainder of this paper addresses the problem of finding a p0 that fixes
this issue.

2 Results

In this section we define the natural fixed point for a family of ANP row per-
turbations. This natural fixed point removes the objections raised earlier if it
exists. In addition we derive a formula for the natural fixed point.

In order to fix our terminology, let A be an ANP network with a alternatives,
n total nodes, and with weighted supermatrix W . In addition FW,r,p0(p) be the
standard family of row perturbations of W in the rth row with fixed point p0.
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Figure 1: Graph with p0 = 0.5
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2.1 Definition and Concepts

The fundamental definition of this paper is that of the natural fixed point, which
follows. [Natural Fixed Point of alternative i] With W , a, n, and FW,r,p0(p) as
defined above, we define the natural fixed point for alternative i to be the
fixed point value that makes the function ai(p) =“the score of alternative i with
parameter p” differentiable at p = p0. We denote it by ρ0,i. We would like to
note a few things immediately about this definition. From the definition it is
not at all apparent that there should be only one such value. However, we are
dealing with the standard family FW,r,p0 , and we can readily understand how
that family changes as we change p0. It comes out from that there is at most
one such value. At the moment we have no guarantee that there will always
exist a ρ0,i. If the graph of ai(p) has certain properties ρ0,i will exist, if the
graph does not have those properties ρ0,i will not (a nice exclusion). Perhaps it
is the case that all ai(p) graphs will have that property, but we do not have a
proof of that. It is almost never the case that ρ0,i and ρ0,j are the same (with
i 6= j of course). The BigBurger example we calculate later is one such example
where they are not equal. Notice that ρ0,i actually depends upon the row r
we are doing sensitivity upon. When we wish to be explicit about noting the
row we write ρ0,r,i.

2.2 Main Results

The following is the main calculation result we have. With W , a, n, and
FW,r,p0(p) as defined above, with p0 the fixed point of the family, we can calcu-
late the natural fixed point for the family via the following formula (assuming
it exists).

ρ0,i =
β

α+ β

where α = (1 − p0)a′i+(p0) and β = p0a
′
i−(p0) where a′i+(p0) and a′i−(p0) are

the upper and lower derivative of the score of alternative i with respect to p
where we use the original p0 for the family and evaluate the derivatives at that
fixed point.

Proof. Assume at least one ρ0,i exists. We have two different families of ANP
row perturbations, FW,r,p0(p) and FW,r,ρ0,i(p). Based on the formula of FW,r,p0(p)
in [?] we can write that

FW,r,ρ0,i(p) = FW,r,p0(γρ0,i(p))

where γρ0,i : [0, 1]→ [0, 1] is essentially a change of parameters. We can write a
similar formula for the score of alternative i. Let us make our notation for the
score of alternative i a bit more specific. Let

ap0,i(p)

be the score of alternative i when our fixed point is p0. With this we can write

aρ0,i,i(p) = ap0,i(γρ0,i(p)).
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This is the same γρ0,i as defined above. And the formula for γρ0,i follows directly
from the definition of the family FW,r,p0(p). Namely it is

γρ0,i(p) =

{
p · p0ρ0,i if 0 ≤ p ≤ ρ0,i

(p− 1) 1−p0
1−ρ0,i + 1 if ρ0,i < p ≤ 1

Notice the γρ0,i(p) is a piecewise linear function. Using this function we can
calculate the upper and lower derivatives of aρ0,i,i(p) with respect to p at p =
ρ0,i. First we handle the upper derivative.

a′ρ0,i,i+(ρ0,i) =
d

dp+

∣∣∣∣
ρ0,i

ap0,i(γρ0,i(p))

= a′p0,i+(γρ0,i(ρ0,i)) · γ′ρ0,i+(ρ0,i)

= a′p0,i+(p0) · 1− p0
1− ρ0,i

Now the lower derivative.

a′ρ0,i,i−(ρ0,i) =
d

dp−

∣∣∣∣
ρ0,i

ap0,i(γρ0,i(p))

= a′p0,i−(γρ0,i(ρ0,i)) · γ′ρ0,i−(ρ0,i)

= a′p0,i+(p0) · p0
ρ0,i

Now, by definition of ρ0,i we have the upper and lower derivatives should
be equal. Before we do this let us setup the notation a+ = a′p0,i+(p0) and
a− = a′p0,i−(p0) to make our equations a bit easier to read. We thus get the
following sequence of equalities.

a′ρ0,i,i+(ρ0,i) = a′ρ0,i,i−(ρ0,i)

a′p0,i+(p0) · 1− p0
1− ρ0,i

= a′p0,i+(p0) · p0
ρ0,i

a+ ·
1− p0
1− ρ0,i

= a− ·
p0
ρ0,i

Next, to simplify our equation further let α = a+ · (1− p0) and β = a− · p0. We
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can then continue the above equations as follows, and solve for ρ0,i.

a+ ·
1− p0
1− ρ0,i

= a− ·
p0
ρ0,i

α

1− ρ0,i
=

β

ρ0,i

αρ0,i = β(1− ρ0,i)
αρ0,i = β − βρ0,i

αρ0,i + βρ0,i = β

ρ0,i(α+ β) = β

ρ0,i =
β

α+ β

Which completes the proof.

This equation uniquely defines any ρ0,i, thus there is at most one such natural
fixed point. The next question is when ρ0,i exists. Based upon the formula for
ρ0,i we can easily find the following corollary. With notation as in the previous
theorem ρ0,i exists iff a− and a+ share the same sign.

Proof. From the previous theorem we have that any ρ0,i equaling β
α+β will be

the natural fixed point. Thus for the natural fixed point to exist that formula
must give us a value between 0 and 1. So we have

0 < ρ0,i < 1

0 < β
α+β < 1

We can continue to work on this by separating into cases, where the denominator
is positive or negative. If the denominator is positive we can continue as follows.

0 < β
α+β < 1

0 < β < α+ β

−β < 0 < α

−a−p0 < 0 < a+(1− p0)

The left hand side of the last inequality says a− > 0. The right hand side of
the last inequality says a+ > 0. So they share the same sign, and we continue.

−a−p0 < 0 < a+(1− p0)
−p0

1− p0
< 0 <

a+
a−

Notice the left hand hand side of this inequality is always true, and since both
a+ and a are positive the right hand side is trivially true. Thus if α + β > 0
both a+ and a− need only be positive (and the opposite as well, if a+ and a−
are both positive we can work backwards to get α+ β > 0 and that ρ0,i exists.)

Working with α+β < 0 works similarly, giving a− and a+ are both negative.
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As a second corollary simplifies our formulas in a particular case of p0. With
notation as in theorem ?? and p0 = 0.5 we have the following formula:

ρ0,i =
a−

a+ + a−

Proof. Merely plugin p0 = 0.5 to the formulas for α and β to arrive at the
result.

3 Calculations and Applications

In this section we will calculate the natural fixed points by hand for two mod-
els, using SuperDecisions to facilitate the calculation. We end this section by
discussing some applications of natural fixed points.

In order to calculate ρ0,i we will use the formula from theorem [?] to perform
the calculation. In order to do this, we need to know a+ and a−, that is the
upper and lower derivatives for some value p0. We use SuperDecisions to do the
heavy lifting for this (other examples using SuperDecisions to calculate upper
and lower derivatives is given in [?]).

3.1 4node2 model

This model is the model as used in the examples of [?]. It is a model with
two clusters (a criteria cluster and alternatives cluster) each of which contain
two nodes (two criteria A and B and two alternatives 1 and 2). All nodes are
connected to one another with pairwise comparison data inputted. The resulting
weighted supermatrix is the following (the order of the nodes are A, B, 1, and
finally 2).

W =


0.37500 0.20001 0.04999 0.33333
0.12500 0.29999 0.45000 0.16667
0.33333 0.04999 0.27500 0.15001
0.16667 0.45000 0.22500 0.34999


The calculation of the upper and lower of derivatives using p0 = 0.5 gives the
following results.

D(Normal) 1 D(Normal) 2

Original 0.39 0.61
A:upper 0.73 -0.73
B:upper -0.68 0.68
1:upper 2.45 -2.45
2:upper -1.66 1.66
A:lower 0.22 -0.22
B:lower -0.2 0.2
1:lower 0.58 -0.58
2:lower -0.67 0.67
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In order to calculate ρ0,1,1 (that is the natural fixed point for row 1, corre-
sponding to node A, for alternative 1, which is in fact named node 1) we have
a+ = A : upper and a− = A : lower from the given table. Thus we get from
corollary ??

ρ0,1,1 =
a−

a+ + a−
= 0.22/0.95 = 0.23

Similarly we get the following

ρ0,2,1 = 0.228999

ρ0,3,1 = 0.190516

ρ0,4,1 = 0.287952

Because there are only two alternatives it turns out ρ0,r,1 = ρ0,r,2 for all rows
r. In our next example we will see that need not occur if there are more than
two alternatives.

3.2 BigBurger model

This is one of the standard models included in SuperDecisions. We will calculate
the natural fixed point for alternatives 1, 2, 3 for sensitivity with row for 1 Subs.

The resulting upper and lower derivatives are the following.

Row Deriv Mac Deriv BK Deriv Wen

1 Subs:upper -0.462106 0.141492 0.320614
1 Subs:lower -0.008785 0.002465 0.006321

Notice that node 1 Subs is row 24 of the original supermatrix. We will calculate
ρ0,24,1 the natural fixed point for row 24 alternative 1 (namely MacDonalds).
In that case a+ = −0.462106 and a− = −0.008785, and from corollary ?? we
have the following.

ρ0,24,1 =
a−

a+ + a−
= −0.008785/(−0.462106 +−0.008785) = .01865612

Similarly we find the following for each alternative.

ρ0,24,1 = 0.018656

ρ0,24,2 = 0.017147

ρ0,24,3 = 0.019350

Notice that the natural fixed points for each alternative are different in this
case.

3.3 Applications

There are two specific applications we discuss here. One has to do with analysis
of nodes of interest where one should further analyze one’s judgments. The
other has to do with the standard sensitivity graph.

In the first application, consider the process of entering comparison data
(or multiple users entering comparison data). This can be a tedious process,
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especially to get data as accurate as possible. However, we can imagine going
through the pairwise comparisons first as a rough draft, not debating over a 4
versus a 5, and synthesizing. If we then compute total marginal influence using
the natural fixed point we get a single marginal influence value for each row
and each alternative. If we do a euclidean size of the derivative vector for each
row (summing over the alternatives) we get a total marginal influence for the
given row. If we then sort the rows on this total marginal influence we now
have a measure of which nodes are most sensitive to small changes. That is
the nodes we should focus in on for further refining our original (approximate)
judgments. Typically there are very few of these nodes. In addition we know
that when the total marginal influence of a row is very close to zero there is no
use refining the pairwise comparisons for that node (as they make essentially
no difference). This process could dramatically increase the speed of inputing
data without sacrificing accuracy.

The second application has to do with graphing the alternative scores as a
function of the parameter p. As we can see in the figure on page ??, there are
breaks in the graph over p0 unless we choose p0 to be the natural fixed point. If
we choose p0 for each graph to be the natural fixed point, the graphs loose the
breaks. With this change the graphs now appear as they would in the case of
AHP trees. In addition this process precisely reproduces the AHP graph when
our network happens to be a tree.
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