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Summary:  This study discusses the mathematical structure of the dominant AHP and the concurrent 
convergence method that which originally developed by Kinoshita and Nakanishi. They introduced a new 
concept of a regulating alternative into an analyzing tool for a simple evaluation problem with a criterion 
set and an alternative set. Although the original idea of the dominant AHP and the concurrent 
convergence method is unique, the dominant AHP and the concurrent convergence method are not 
sufficiently analyzed in mathematical theory. This study shows that the dominant AHP consists of a pair 
of evaluation rules satisfying a certain property of overall evaluation vectors. This study also shows that 
the convergence of concurrent convergence method is guaranteed theoretically.  
 
1. Introduction 

 
AHP is a flexible decision making system that can deal with the subjective judgments of a decision 
maker. Numerously successful applications have been reported in this field (Saaty, 1980). In AHP, the 
decision maker identifies an ambiguous evaluation problem into a hierarchy structure within the 
evaluation goal, criteria and alternatives, each of which corresponds to a node of the hierarchy. The 
hierarchy with a top, middle and bottom structure usually consists of three levels, the goal, the criteria, 
and the alternatives, respectively. This study also discusses the three-level hierarchy. Directed arcs of the 
hierarchy form a parents-child relationship among the nodes and the existence of a pair of parents-child 
nodes means that the decision maker judges the relative importance of the child-nodes from the parents-
node. That is, for example, directed arcs from the top level to the middle level indicate the decision 
maker's judgment on the relative importance of all criteria from the goal. Saaty (Saaty, 1980) proposes 
that in this three-level hierarchy the decision maker firstly judges the relative importance of the criteria 
from the goal and secondarily judges that of the alternative from the criteria. Judgments of the relative 
importance are expressed numerically, which are called evaluation values. Let I and J be a set of 
alternatives and that of criteria, respectively, and denote their cardinalities by I and J, respectively. Then 
we have a total of |I|×(J+1) evaluation values in the three-level hierarchy. By plotting a set of evaluation 
values on the arcs of hierarchy, the hierarchy becomes a tree of a network with the directed arcs. In the 
original AHP, the evaluation value of a child-node from a parents-node is quantified under the 
assumption that the decision maker compares all pairs between distinct two children of the parents. 

Kinoshita and Nakanishi (Kinoshita and Nakanishi, 1999) focus on the following empirical result: 
When the decision maker evaluates relative importance of the criteria from the goal, he/she focuses on a 
specific alternative and refers to relative importance of the criteria from the specific alternative. The 
specific alternative is called the regulating alternative. Kinoshita and Nakanishi (Kinoshita and 
Nakanishi, 1999) assume that if there exists exactly one regulating alternative then the relative 
importance of the criteria from the regulating alternative determines that from other alternatives. If there 
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exists only one regulating alternative in the alternative set, then the regulating alternative is called the 
dominant one and they implement the assumption into the dominant AHP. The mathematical description 
of the dominant AHP is as follows: 

 
Step 0:   The decision maker selects a regulating alternative from the alternative set I. Let alternative  

 be the regulating alternative. k
Step 1:  From the viewpoint of every criterion Jj∈ , the decision maker evaluates the relative 

importance of all alternatives and quantifies the evaluation values of all alternatives. Let 
ija

| J
 be the evaluation value of the alternative i from the criterion  and let A be an 

| evaluation matrix whose ( element is .   

j

|| J× ), ji ija

Step 2:  From the viewpoint of the regulating alternative k, the decision maker evaluates the relative 
importance of all criteria and quantifies the evaluation values of all criteria by such as the 
eigenvalue method for a pairwise comparison matrix of the criteria. Let b  be a | -
dimensional vector whose th element is the evaluation value of the criterion  from the 
regulating alternative . 

k |J
j j

k
Step 3: Let A  be a | diagonal matrix whose ( element is a . Calculate AA  and 

define the ith element of as the overall evaluation value of alternative i. 

k ||| JJ × ), ji kj
k

k b1−

k
kAA b1−

 
Suppose that the alternative k is the dominant one. Let   be a | -dimensional vector whose th 
element is the unknown evaluation value of the criterion  from the alternative i , and let A  be a 
diagonal matrix whose (  element is . Then, Kinoshita and Nakanishi (Kinoshita and Nakanishi, 

1999) propose a following evaluation rule under their assumption:   

ib̂
j

|J j
k≠ i

), jj ija
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k
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AA
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ˆ
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 for all i , where   is all one vector and  }{\ kI∈ e T stands for  the transpose operation. They define 

                                                                                                                                           (2) b̂1 i
iAA−

as the  overall evaluation vector derived from the alternative i and they point out that  coincides  
(except for a scalar multiple) with  for all  

b̂1 i
iAA−

bk
kAA 1− }{\ kIi∈  . Therefore, they assert that the overall 

evaluation vector bk
kAA 1−  is valid. 

     In order to deal with an additional data to A , they relax their assumption and extend single regulating 
alternative to multiple ones. Let K be an index set of regulating alternatives, then bk  of the regulating 
alternative , can be given by Step 2 and |  types of Kk ∈ |K A , say { }KkA k ∈)( , can be given by 

Step 1. They assume that the relative importance of criteria from every alternative is an aggregately 
relative importance of criteria from all re ulating alter atives. Under the assumption they develop a two-
stage procedure as follows: First, merge

g n
{ }KA k( k) ∈  into a positive matrix A  by an appropriate 

method (Kinoshita and Nakanishi, 1999). Next, apply the evaluation rule (1) to estimating b  from 
relative importance b

iˆ
k  of each regulating alternative Kk ∈ . Hence, calculate 

 

bk
i kAA 1−                                                                     (3) 

 for all i and all  and generate  from I∈ Kk ∈ ib̂ { }KkAA k
ki ∈− b1    by an iterative procedure 

(Kinoshita and Nakanishi, 1999), for every i I∈ .  
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 The two-stage procedure is called the concurrent convergence method in (Kinoshita and Nakanishi, 
1999). However, convergence of the iterative procedure in the second stage has not been guaranteed 
theoretically and it is still an open problem (Takahashi, 1998). Kinoshita and Nakanishi (Kinoshita and 
Nakanishi, 199 ) observe in a numerical example that the concurrent convergence method provides a 
limit point set 

9  
{ }Iii ∈b̂  and that b̂

11
1AA−  coincides (except for a scalar multiple) with  for all 

. The latter observation arises in both the dominant AHP and the concurrent convergence method. It 
is called the consistency property.  

b̂1 i
iAA−

Ii∈

 The first aim of this study is to show that some pairs of evaluation rules satisfy the consistency 
property other than the pair of  (1) and (2) in the dominant AHP. The second aim is to prove the 
convergence of the iterative procedure in the concurrent convergence method. This study contributes the 
mathematical foundations and generalizations of the dominant AHP and the concurrent convergence 
method. 

This paper has five sections Section 2 discusses the mathematical structure of the dominant AHP, 
especially the pair of evaluation rules (1) and (2). Section 3 shows the convergence and the consistency 
property of the concurrent convergence method. The final section is a brief conclusion. We outline some 
future extensions as well. 
 
2. Mathematical structure of the dominant AHP Model 
 
In this section, we discuss mathematical properties of the overall evaluation vector AA and 

alternative i's evaluation vector b of the criteria that is estimated by regulating alternative k . (Note that 
 is well defined for all i  since 

k
k b1−

iˆ

IiA ∈ A  is a positive matrix.) We only focus on the directions of the 

overall evaluation vectors, AA  and , and the evaluation vectors of criteria, b  and .  

The overall evaluation vector is to indicate the relative importance of alternatives and its length has no 
information concerning alternatives.  So,  if a vector a coincides except for a scalar multiple with a vector 
b, we say that a has the same direction as b. In order to express the mathematical properties of the 
dominant AHP, we introduce two linear transformations, 

k
k b1−

b̂1 iAAi
− k ib̂

( )•k
iB  and ( )•iV  as follows: For a | -

dimensional vector b , we define V  and 

|J

( )b b1−
iAA=i ( ) bbk

i
1−= ki AAB  for all i Ik ∈,

ˆ( i
i b

.  Then, the overall 

evaluation vector by the evaluation rule (2) is given by the function value V . )
 
 Lemma 1 Suppose that  is defined by  (1) for all iib̂ }{\ kI∈ , then  
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Then we summarize the consistency property of the dominant AHP as follows: 
 
Theorem 2 Let b be a | -dimensional vector, then |J ( ) ))(( bb k

iik BV=V  for all . Suppose that  

is defined by  (1) for all i , then 

Ii,k∈ ib̂

{ }kI \∈ ( )k
k bV  has the same direction as ( )i

i b̂V . 
Proof:  For every | -dimensional vector ,  |J b
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k
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 for all i .  It follows from Lemma 1 and (5) that  Ik ∈,
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From Theorem 2, Kinoshita and Nakanishi (Kinoshita and Nakanishi, 1999) mention that the pair of 
evaluation rules (1) and (2) provides a consistent overall evaluation vector among all alternatives. 
     Under the assumption that alternative i has the evaluation vector of criteria, we apply (1) to 

estimating alternative k’s evaluation vector of criteria from  and then obtain . Hence,  can be 

considered as an inverse function of  in the sense as follows: 

ib̂
ib̂ kb ( )•k
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3．Mathematical structure of the concurrent convergence method 
 
In this section, we consider the case that there exist several regulating alternatives, that is the case of 

． The concurrent convergence method begins with merging 2|K| ≥ ( ) }{ KkA k ∈  to generate a 
common evaluation matrix Ａ for all alternatives． This is the first stage of the concurrent convergence 
method． Then, we go to the following initial step of the second stage as follows： 
Algorithm 0  

Step 0： For a given set of the evaluation vectors of criteria, }{ Kkk ∈b , in the first stage, let 

                                                                                                                                       (7) bb kk =:0

                  for all ． Let  and go to Step 1． Kk ∈ 0:=t
    Step 1: Let 

                 ∑
∈

−

−

+ =
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k
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k
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K be
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1
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     for all  i  . I∈
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Step 2:   If { } 0-max 1 =∈+ Iii
t

i
t bb  then set i

t
i

1+= bb  and stop.  Otherwise, update 

     t  and go to Step 1. 1: += t
 
Kinoshita and Nakanishi (Kinoshita and Nakanishi, 1999) report in some numerical experiments that 
Algorithm 0 has a limit point set { }Iii ∈b  such that i

iAA b1−  has the same direction as i
lAA b1−  for all 

 ., Ili ∈
    To prove the observation above, we consider the following Algorithms 1 which is simplified from 
Algorithm 0. 
 
Algorithm 1 

Step 0:  For all let ,Kk ∈

                                        (9) .: 1
0

k
k

k A bp −=
                 Set  . 0:=t

Step 1:  For all k  let ,K∈
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l
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Step 2 : If ,0-max 1 =+∈

k
t

k
tKk

pp  them for all ,Kk ∈ let k
t

k
1: += pp  and stop. 

                 Otherwise, set  t  and go to Step 1 .   1: += t
 
We can correspond { },.....2,1,0=tk

tp  of Algorithm 1 to { },.....2,1,0=tk
tb  of Algorithm 0 as follows: 

 
Lemma  8  The equation    

k
t

k
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holds for all   and t , and Kk∈ ,...1,0=
 

holds for all and  .  If  Algorithm 0 is convergent finitely , then so Algorithm 1, and vice 
versa. 

Ii∈ ,...2,1=t

Proof:  We will show (11) by induction of iteration t. At iteration t = 0,  follows directly 

from (7) and (9) for all . We assume that at iteration s holds for all .  Then it 
follows (8) and (10) that 
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for all . Therefore, we complete (11) for all Kk∈ Kk∈  and ,...1,0=t . This means from (8) that     
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      When Algorithm 0 stops at iteration t , we have b  for all ∈I  and hence,  
for all .  Therefore, Algorithm 1 stops at iteration t . On the contrary, if Algorithm 1 stops at 
iteration t, we have . This implies that b .                                                       ■ 

i
t

i
t b=+1

k
t+1

i k
tk

k
tk AA bb 1

1
1 −

+
− =

Kk ∈
k
tk

k
tk AA bb 1

1
1 −

+
− = k

tb=

 
From Lemma 8 we only discuss the convergence of Algorithm 1 instead of Algorithm 0. 
 
Lemma 9  The vector  is a positive vector for every k

tp Kk∈  and ,...1,0=t . 
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Proof: Note that b  is a positive vector for all kk
0 K∈ . Since every diagonal element of the diagonal 

matrix  is positive, it follows from Lemma 8 that  is also a positive vector for all k . Assume 

that  is a positive vector for all , then it follows from (10) that  is positive for all .                                       
kA

k

k
0p K∈

ktp Kk∈ k
t 1+p K∈

                                                                                                                                                                    ■ 
Lemma  10  For every  and  ,  the following equation holds Kk∈ ,...1,0=t

1=Τ pe k
tkA .                                                                    (12) 

Proof:  It follows from (8) that 
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Lemmas 9 and 10 imply that { }...1,0=tk

tp  is a bounded set in the positive orthant for all  ． Kk ∈
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Proof:  The assertion is directly from Lemma 10.                                                                                      ■ 
 
Consider the following convex cone 
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which is generated by the vectors { . For a set D we denote the relative interior and relative 
boundary of D by riD and bdD, respectively. 

}|1 Kkk
t ∈+p

 
Lemma 12  Let R be an extreme ray set of  Cone . If dimR = 1, then Algorithm 1 stops. 
Otherwise, for every 
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 for  all  . This satisfies the stopping criterion of Step 3. Kk ∈
Next, we consider .  Then, it follows that and that 2dim ≥R )Cone()one(riC RR ⊂ ∅=∩ RR)riCone( . 
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for all . This means that  for allKk ∈ Rp ∉+
k
t 1 Kk ∈ .                                                                            ■ 

Lemma 13 
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Proof:   It is directly from Lemma 12.                                                                                                       ■ 
 
Lemma 13 means that Cone ({  shrinks monotonically for t = 0,1…. We assume that 

Algorithm 1 generates an infinite sequence of points{ . Let  

for all ,then  is compact and the product set is also compact. This implies the following 
lemma. 
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It follows from Lemma 13 that { }( )Kkk
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Since { }( )Kkk ∈p~Cone  is a closed set, there exists a positive scalar ε  such that 
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 It follows from (20) that there exists an index t T∈1  such that { }( ) ( )εGKkk
t ⊆Cone 11

∈+p . Therefore, 
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The following lemma guarantees the existence of a limit point of the infinite sequence {  
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 for all  such that 

kp̂

..},1,0|{ .tk
t =p Kk ∈

Hp ∈kˆ .                                                                (22) 

Hence,  has the same direction as for all kp̂ lp̂ Klk ∈, . 
Proof: It is trivial from Lemmas 10, 13 and 15.                                                                                    ■ 
 
From the viewpoint of set convergence (Rockafellar and Wets, 1998), Lemma 16 implies that 
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By the above lemmas we can summarize the mathematical properties of the concurrent convergence 
method as follows: 
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Theorem 18  The concurrent convergence method has a limit point set { }.Iii ∈b . Let i
iAA b-1 be the 

overall evaluation vector of alternative then the overall evaluation vector of alternative i has the same 
direction as that of alternative l for all i

,i
l I∈, . 

Proof:  The assertion follows directly from Lemma 8, 16 and 17.                                                            ■ 
 
4. Conclusion 
 
This paper develops the mathematical foundations of the dominant AHP and a mechanism for the 
convergence of the concurrent convergence method. Hence, we show the mathematical description that 
the dominant AHP consists of a pair of simple evaluation rules (1) and (2) and that the pair of the rules 
provides the consistency property between regulating alternative’s overall evaluation vector and other 
alternative’s ones. Furthermore we discuss an extension of the evaluation rules (1) and (2) without 
violating the property. As stated in Example 1, one can apply the proposed evaluation rules to sensitive 
for the overall evaluation vector. 
  This paper shows the convergence of the concurrent convergence method whose  is fixed as the 

non-weighted average of 

i
t 1+p

( ){ }KlA l
ti

l
t ∈|/ T pep  in Step 1. By the same way as the proofs in section 3, we 

can guarantee the convergence of a variant concurrent convergence method whose  is given by a 

weighted average of 

i
t 1+p

( ){ }KlA l
ti ∈|/ T pel

tp . Exploiting the convergence, one can extend the dominant 
AHP into an analyzing tool for an evaluation problem with a complex network structure (Kinoshita and 
Nakanishi, Submitted, Sekitani and Takahashi, 2001), interval AHP (Arbel and Vargas, 1992) and group 
AHP (Nakanishi and Kinoshita, 1998, Yamada and Sugiyama, 1997). 
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