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ABSTRACT 

o 
1 0 

Since it provides varying degrees of discrimination across matrix sizes, the 
10 percent cut-off requirement for the Consistency Ratio (CR) is, in itself, 
an inconsistent rule. By looking at the CR as a relative departure from pure 
consistency (rather than pure randomness), this study proposes a better 
measure. It simulates varying degrees of departure from pure consistency, and 
it analyzes two different consistency measures. It concludes by recommending 
advice for AHP users depending upon their relative departure from pure 
consistency. 

INTRODUCTION 

In the Analytic Hierarchy Process (AHP), the Consistency Ratio has proved to 
be very helpful to decision makers in deciding whether they have been logical 
in entering their paired comparisons. Thomas L. Saaty (1977, 1980), the 
originator of AHP, defined this measure as being the ratio of a consistency 
index of a matrix to the mean consistency index from a large sample of 
randomly generated matrices. 

Consistency Ratio (CR) = CI / Mean Random CI 

Central to the measurement of CR is the consistency index. 
Amax - 1 
n - 1 

In this formula, Amax is the largest principal eigenvalue 
reciprocal pairwise comparison matrix (aii=1/aji) of size n 
comparisons are perfectly consistent (au i I aix = aik), then 
the size of the matrix and the consistency index is zero. 
inconsistency between comparisons, the larger Amax and 
consistency index (which really measures inconsistency). 
random entries, CI is likely to be very large. 

Consistency Index (CI) = 

(1) 

(2) 

of the positive 
. If the paired 
Amax is equal to 
The larger the 

the larger the 
In matrices with 

By placing the Mean Random CI in the denominator of (1), Saaty defines the CR 
as the degree of departure from pure inconsistency. If a person has been 
relatively consistent in making their paired comparisons, then they should 
have a much lower consistency index than what would be produced by random 
entries. Saaty claims that an acceptable consistency ratio should be less 
than .10, although a ratio of less than .2 is considered tolerable. 

Although this rule has provided good guidance, it, in itself, has been found 
to be inconsistent across matrix sizes (Lane and Verdini, 1989). Table 1 
illustrates this fact. It shows the mean random consistency index for 
different matrix sizes plus the consistency index at various percentiles on 
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Table 1. Random and Cutoff Consistency Indexes 

Consistency Saaty's Cut-off 

Mean Index from Consistency Index Consisteny Indexes

Size Randomly at Various 
of Generated Percentiles Tolerable Recommended 

Matrix Matrices Level Level 
n = 500 207. 10% 5% 2% 20% 10% 

3 .58 .027 .005 .001 .000 .116 .058 

4 .90 .237 .130 .075 .035 .180 .090 

5 1. 12 .564 .392 .302 .217 .224 .112 

6 1.24 .820 .619 .495 .342 .248 .124 

7 1.32 .951 .790 .648 .466 .264 .132 

8 1.41 1.073 .924 .839 .698 .282 .141 

9 1.45 1.155 1.022 .908 .837 .290 .145 

10 1.49 1.191 1.096 1.023 .892 .298 .149 ] 

the consistent side of the distribution. Also included are Saaty's 
recommended cut-off points for acceptable consistency. Notice that for matrix 
sizes 5 or larger, the cut-off consistency index is well outside the randomly 
generated distribution. For matrix sizes 3 and 4 there is a greater than 5 
percent chance that a consistency index at the cut-off point could have come 
from the distribution of random entries. 

The implication is that perhaps the 10 percent cut-off is too lax for the 
smaller-sized matrices but too onerous for larger matrices. This is logical, 
because larger-sized matrices have more redundant comparisons and therefore 
greater opportunities for inconsistencies to creep into the judgments. 
Perhaps a more sensible policy would be a variable cut-off (not 10 percent) 
which increases with the size of matrix. 

Lane and Verdini (1989) made a partial step in this direction when they 
suggested stricter cut-off requirements for 3 and 4 attribute matrices (.0035 
and .048 respectively). For larger-sized matrices, they would maintain 
Saaty's 10 percent rule. One wonders, however, whether the .0035 level is 
achievable for matrix size 3 and whether the 10 percent rule is appropriate 
for larger-sized matrices. 

An alternate approach adopted by Golden and Wang (1989) was to develop an 
entirely new measure of- consistency. Their measure is 

G = 1/n Z Z I C•ii - g'i (3) 

where C"tj is the column normalized paired comparison matrix 
el is the normalized vector of row geometric mean priorities 

0 
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Their method also works with the traditional eigenvector priorities (el) in 

place of el. With perfect consistency, all column normalized vectors of 

Csti are equal to gst or est and the consistency measure would be equal to 

zero. 

To specify cutoffs for their new measure, Golden and Wang produced samples of 
simulated matrices with varying degrees of inconsistency. They showed 
that the 33rd percentile of the sample with perturbations of -13 
intervals on the AHP rating Sbale produced results similar to 
Saaty's 10 percent rule, yet with more uniform discrimination across 
different matrix sizes 

While it appears that Golden and Wang's cut-off values are an improvement over 
the 10 percent rule, it is not as clear that a new measure is necessary. As 
alluded above, a variable cut-off for the CI or CR (not a set 10 percent) 
could also provide more uniform discrimination. 

This study investigates the use of a different CR and compares it to Golden 
and Wang's G value. Unlike the traditional CR which measures departure from 
pure randomness, this study looks upon the inconsistency measure as a 
departure from pure consistency. In other words, the CR proposed herein 
utilizes a maximum acceptable CI in the denominator of equation (1). A value 
of greater than one would then suggest a level of inconsistency beyond the 
acceptable level. 

In part, this study is similar to Golden and Wang's approach. They too, 
looked upon inconsistency as a departure from the purely consistent case. It 
differs, however, in the manner in which the simulations and validations are 
conducted. In their study, n-1 comparisons from the first row of the 'paired 
comparison matrix were randomly selected from the AHP retina scale (1/9, 1/8, 
... 1/3, 1/2, 1, 2, 3, ... 8, 9). These values were then used to generate 
temporarily consistent comparisons for the remaining n(n-1)/2-(n-1), items. 
These temporary items were then perturbated tic intervals on the AHP riting 
scale , subject to the constraint that 1/9 s Clj 4 9. Since the first n-1 
comparison are not perturbated and since each matrix size has a different 
number of perturbated comparisons, this procedure produces a different average 
perturbation across matrix sizes for any selected k. Secondly, the 
calculation of the consistent (before perturbation) comparisons (Cii = 
Clt/C11) can result in values far in excess of what is allowed in AHP theory. 
This necessitates excessive use of the 1/9 s Cii s 9 constraint to bring the 
values back within range. The procedure proposed herein helps overcome these 
deficiencies. 

METHOD 

The premise used in this study is that measurement of the degree of 
inconsistency should be considered as a departure from pure consistency. 
Accordingly, perfectly consistent matrices (n=500) were simulated and these 
were subjected to 10 different levels of perturbation. The perfectly 
consistent matrices and their perturbations were conducted in the following 
manner. 
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Generating the Perfectly Consistent Matrix 

1. Generate a Random Number N(1) between 10 and 100 and initially designate 
this number as both the Minimum (Nmin) and Maximum (Nmax) of n numbers 
to be generated. 

2. For i= 2 to n, 
a. determine Nmtn and Nmax. 
b. randomly select N(i) from the range 1/9*(Nmax) and 9.(Nmin). 

3. The perfectly consistent paired comparisons are A(i,j) = N(i)/N(j) 

where A(i,j) is the perfectly consistent paired comparison matrix. 

Perturbing the Perfectly Consistent Matrix 

For all A(i,j) a 1.0 

1. First Perturbation 

Randomly change each paired comparison A(i,j) to the next higher or lower 
integer P(i,j) (not the same as rounding). P(j,i) = 1 / P(i,j) 

2 Perturbations 2 to 10 

For d = 1 to 9 

HU)) = A(i,j) + k if 1.0 s A(Id) + k s 9.9 
P(i,j) = 9.9 if A(i,j) + k 9,9 (k is +) 
P(i,j) = 1/(1 k 1 - A(1,j) + 2) if A(i,j) + k < 1.0 (k is -) 

where P(i,j) is the perturbated paired comparison 
k is a random ± integer from 1 to d. 

P(j,i) = 1 / 

In total, there are ten different degrees of perturbation. In the first 
perturbation above, the raising or lowering of each comparison (A(i,j) 1.0) 
to the higher or lower integer results in a theoretical average perturbation 
value of .5 interval step on the AHP rating scale. By design, the other d 
perturbation levels will have theoretical average perturbation values of 

d= 1 2 3 4 5 6 7 8 9 
average 
perturbation 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

For example, with d = 3, the potential values for k are -3, -2, -1, 1, 2, and 
3. The absolute average of these is 2.0. In practice, however, the actual 
average will generally be lower than these values, because the truncation of 
extreme P(i,j) to 9.9 causes the effect of some perturbations to be dampened. 
In passing, we should note that the last 9 perturbations wit d= 1 to 9 allow 
the P(i,j) to be in non-integer form, just like the original A(i,j). 
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For each perturbated .matrix, we can calculate the average perturbation value 
and the resulting CI and G. We can use these data to determine appropriate 
cut-off points and we can also use them with a separate sample to see how each 
method discriminates between consistent and inconsistent cases. 

SIMULATION RESULTS 

The mean CI and G values for various Matrix sizes and levels of perturbation 
are presented in Tables 2 and 3 respectively. Notice first that the average 
perturbation value of the various matrix sizes departs from the theoretical 
average as the degree of perturbation increases. This is because larger-sized 
perturbations are truncated to 9.9 if they go above this value. 

Table 2. Statistics for CI at Different Perturbation Levels 

Matrix Size 
and Type of 
Measure 

Range (±) of Non-Zero Integer Perturbations (k) and the 
Range of Resulting Average Perturbation Intervals • 

N. I 
.48- 
.49 

±1 
1.00 

±2 
1.49- 
1.50 

±3 
1.98- 
2.00 

±4 
2.45- 
2.48 

±5 
2.93- 
2.95 

±6 
3.37- 
3.44 

±7 
3.85- 
3.87 

±8 
4.20- 
4.32 

±9 
4.64-
4.76 

*** *** SOO OM. Si* IWO *AN SO , 1640 SOS 

3 Mean CI .023 .034 .069 .117 .182 .222 .298 .355; .455 .457 
Std. Deviation .037 .034 .089 .149 .241 .296 .409 .515 .624 .660 

MOS SOO SO MO SOS SOS 000 MO Of* Olt 

4 Mean CI .040 .058 .121 .205 .298 .418 .530 .665 .810 .902 
Std. Deviation .040 .034 .087 .162 .228 .325 .405 .489 .578 .662 

MOS 0.4. MSS SS 

5 Mean CI .050 .075 .164 .265 .403 .527 .681 .809 1.002 1.126 
Std. Deviation .035 .032 .079 .137 .210 .273 .361 .408 .498 -.555 

SOO 

6 Mean CI .059 .091 .195 .323 .476 .642 .800 .974 1.158 1.309 
Std. Deviation .034 .028 .070 .120 .180 .235 .308 .341 .403 .455 

** 
7 Mean CI .064 .097 .217 .354 .527 .683 .871 1.069 1.245 1.408 

Std. Deviation .029 .026 .061 .108 .158 .198 .239 .282 .343 .376 
* 

8 Mean CI .071 .106 .232 .381 .551 .728 .929 1.119 1.285 1.498 
Std. Deviation .028 .023 .057 .096 .133 .178 .213 .252 .283 .306 

9 Mean CI .079 .111 .245 .399 .592 .784 .964 1. 170 1.371 1.573 
Std. Deviation .027 .022 .052 .086 .117 .144 .181 .204 .243 .274 

10 Mean CI .081 .117 .256 .422 .600 .810 1.005 1.208 1.412 1.601 
Std. Deviation .024 .020 .047 .073 .108 .137 .170 .186 .208 .239 _ 

Note N. I. = Next Integer CI = Consistency Index 
Kolmogorov-Smirnov test for normality = Z > 1.94, p<.001 

•• = Z > 1.62, p<.01 
• = Z > 1.36, p<.05 
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Table 3 Statistics for G at Different Perturbation Levels 

Matrix Size 
and Type.of 
Measure 

Range (±) of Non-Zero Integer Perturbations (k) and the 
Range of Resulting Average Perturbation Intervals 

N. I 
.48- 
.49 

±1 
1.00 

±2 
1.49- 
1.50 

±3 
1.98- 
2.00 

±4 
2.45- 
2.48 

±5 
2.93- 
2.95 

±6 
3.37- 
3.44 

±7 
3.85- 
3.87 

±8 
4.20- 
4.32 

±9 
4.64-
4.76 

*** OM *MS *** OR *ilk iif *** 04 

3 Mean G .101 .142 .187 .241 .287 .308 .337 .361 .399 .388 
Std. Deviation .090 .082 .127 .160 .195 .212 .246 .255 .284 .283 

OM if* i *0 i if* ** AO ii 

4 Mean G .161 .207 .283 .353 .397 .461 .495 .540 .578 .592 
Std. Deviation .086 .072 .111 .144 .160 .180 .196 .211 .222 .217 

ii i * if 

5 Mean G .192 .247 .346 .416 .491 .541 .589 .620 .660 .682 
Std. Deviation .077 .065 .094 .112 .128 .144 .154 .153 .162 .166 

• N.* ** 
6 Mean G .216 .289 .392 .479 .551 .609 .653 .692 .729 .749 

Std. Deviation .067 .060 .082 .096 .110 .111 . 121 . 123 .124 .123 
* 

7 Mean G .232 .306 .424 .511 .592 .638 .690 .736 .765 .787 
Std. Deviation .057 .053 .071 .085 .091 .091 .097 .094 .095 .097 

• * * 
8 Mean G .248 .325 .448 .537 .614 .668 .719 .759 .786 .813 

Std. Deviation .054 .049 .063 .072 .076 .082 .078 .079 .081 .078 

* 
9 Mean G .263 .339 .465 .561 .638 .697 .740 .783 .809 .839 

Std. Deviation .050 .046 .056 .064 .067 .064 .065 .064 .065 .064 
* 

10 Mean G .270 .355 .481 .579 .652 .718 .758 .797 .828 .852 
Std. Deviation .046 .043 .054 .056 .060 .058 .170 .055 .051 .053 

Note N. I. = Next Integer G = Golden and Wang's G value 
Kolmogorov-Smirnov test for normality = 2 > 1.94, p<.001 

e. = 2 > 1.62, p<.01 
= Z > 1.36, p<.05 

As expected, both CI and G increase in a fairly regular fashion as the degree 
of perturbation increases. As one can see by a comparison with Table 1, when 
k = ±.9, the simulated CI is very close to the results from the random entry of 
comparisons. Also by comparison to Table 1, we can see that Saaty's 10 
percent cut-off falls between k = tl and k = ±2 and an average perturbation 
value of between 1.0 and 1.5. ' 

The 33rd percentiles which Golden and Wang use as cut-offs are .103, . 196, 
.259, .299, .323, .344, .361, .371 for matrices 3 to 10 respectively. On 
Table 3, these fall between the average perturbation intervals of .48 and 1.00 
for matrix sizes 3 and 4 and between average perturbation levels of 1.0 and 
1.49 for matrix sizes 5 to 10. 

Except for the random changes to the next higher or lower integer, the 

a 
0 

a 

a 
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distributions are approximately normal for na6 for CI and na5 for G. Although 

space does not allow presentation of the actual Kolmogorov-Smirnov 2-values, 

the detailed data illustrate that G has a more uniform distribution, 

particularly with n<7. At higher levels of perturbation and with na7, CI 

comes closer to approximating the normal distribution. 

A NEW CONSISTENCY RATIO 

In order to determine new cut-offs which measure relative departure from 
consistency, it is necessary to pick an upper inconsistency level which is 
regarded to be unacceptable. In this study, we have chosen the distribution 
with an average perturbation value of 1.5 (column with k=±2 in Table 2). 
These mean CI values are greater than Saaty's 10 percent cut-off rule but 
lower than 20 percent. They are also well the comparable 33 percent cut-off 
for G. 

With this as a new upper level, two new types of cut-offs can be developed for 
CI and G. A new consistency ratio can be defined as 

Consistency Ratio (CRm) = CI /.Mean CI (k.+2) (4) 

With this measure, an unacceptable CRm will have a value greater than unity. 
Moreover, values less than unity can signify differing degrees of consistency 
and we can use give more specific advice rather than a dichotomous 
acceptable/unacceptable statement. For example, the N. I. perturbation column 
of Table 2 has a CRm between .29 and .33, while the k=±1 column has CRm 
between .45 and .49. Thus appropriate advice might be 

0 
CRm < .31 Excellent Consistency 

.31s CRm < .47 Good Consistency 

.47s CRm < 1.0 Acceptable Consistency but Caution Needed 
CRm a 1.0 Unacceptable Inconsistency 

From Table 3, the same type of ratio and advice can be developed for G except 
that the cut-off ratios would be .55, .73 and 1. 

A second type of cut-off is the break point which results in an equal 
percentage of observations in each overlapping distribution. For both CI and 
G, these values for distributions N. I to +3 are presented in Table 4. Notice 
that there is considerable overlap between the various distributions. This is 
caused by the small gradations of perturbation between distributions. 
Although the overlap is severe for both G and CI, there is higher overlap for 
the G measure. 

These break points can be used as statistical tests for deciding which 
distribution a generated CI or G comes from. As was done for the means of the 
distributions, they can also be used to establish a consistency ratio which 
allows variable advice. 

Consistency Ratio (CRbp) = CI / Break Point CI (5) 
(k=t2,vs.k=±3) 

From Table 4, the variable advice cut-off ratios would be .31, .52, and 1. for 
CI, and .58, .77, and I. if G is used in the above equation rather than CI. 
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Table 4 CI and G values for Break Points Between Distributions 

Break Points and Percentage Overlaps in Distributions NI - ±3 
Matrix 
Size BPel 

NI vs. ±1 
CI % 

BPe2 
+1 vs. ±2 
CI % 

BPe3 
±2 vs. ±3 
CI % 

BPg1 
NI vs. ±1 
G % 

BPg2 
±1 vs. ±2 
G % 

BPg3 
±2 vs. ±3 
G % 

3 .017 (36) .030 (32) .052 (42) .111 (37) .152 (43) .189 (43) 
4 .039 (36) .068 (32) .120 (38) .177 (37) .225 (32) .294 (40) 
5 .057 (34) .100 (24) .187 (35) .215 (38) .284 (29) .375 (38) 
6 .074 (28) .120 (14) .235 (26) .253 (29) .332 (25) .434 (32) 
7 .080 (26) .133 ( 9) .263 (23) .270 (27) .354 (19) .463 (31) 
8 .089 (24) .143 ( 6) .288 (18) .287 (24) .374 (16) .490 (25) 
9 .097 (25) .155 ( 3) .302 (14) .302 (24) .395 (11) .514 (23) 
10 .100 (21) .157 ( 3) .316 ( 8) .311 (19) .410 (10) .528 (18) 

VALIDATION 

The samples for comparing and validating the two consistency measures were 
simulated from the perturbation levels represented by the first 4 data columns 
of Tables 2 and 3 (i. e. from N. I. to k=±3). In other words, only 
perturbations of ±3 causing average perturbation values of s2.00 were 
considered within the realm of reasonable levels which people would generate 
in practice. For each matrix size, 250 observations were taken from each of 
the 4 perturbation levels (n=1000). 

This simulation procedure is actually an amalgamation of 4 overlapping 
distributions where the average paired comparison perturbation is 1.24 (i. e. 

- the average of the perturbation levels listed in the first 4 columns of Table 
2 or 3). While this procedure maintains comparable perturbation levels across 
matrix size, it also causes the validation samples to be dominated by low CI 
or G and to be skewed to the right. Accordingly, all validation distributions 
of CI and G are non-normal (minimum Kolmogorov-Smirnov Z=1.73, p<.005 for G; 
Z=4.42, p<.000 for CI). 

Table 5 summarizes the acceptance rates for various types of cut-offs. 
Presented is Saaty's 10% rule for the CR, Lane and Verdini's modified 107. 
rule, Golden and Wang's 33 percentile for G, and the variable cut-off ratios 
for CI and G proposed in this study. Also included are the Golden and Wang 
results from their validation with k=3. 

The first point to note is that the Saaty's 10 percent rule is very stable in 
its discriminatory performance for n>5. For smaller-sized matrices, where. 
skewness is more extreme, it is too lenient in concluding that sufficient 
consistency is present. Lane and Verdini's modification to to use a more 
restrictive acceptance criteria for n=3 and n=4 overcompensates, because few 
matrices are accepted at those levels and the standard deviation of the mean 
acceptance rate increases from 71 to 111. Golden and Wang's 33 percentile, 
with a standard deviation of 16, displays consistent discrimination across 
matrix sizes. By rejecting more matrices, it is also a more restrictive rule. 
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Table 5 -- Acceptance Numbers for Various Cutoff Criteria (n=1000) 

Measure of 
Effectiveness 

Matrix Size and Average Perturbation Size 
Std 
Dev 3 

±1.24 
4 

±1.25 
5 

±1.25 
6 

±1.24 
7 

±1.24 
8 

±1.25 
9 

±1.25 
10 

±1.24 

'CR < 10% 693 60U t551 493 490 489 487 486 71 
Modified CR < 10% 173 382 551 493 490 489 487 486 111 
G < 33rd percentile 373 400 403 419 416 426 417 415 16 

Ratios from Means 
CRme < .31 430 299 231 173 177 152 135 130 96 
CRmg < .55 371 250 192 134 147 135 115 111 83 

CRme < .47 558 427 385 344 374 390 351 383 64 
CRmg < .73 489 428 383 366 375 387 364 367 40 

CRme < 1. 736 704 691 677 651 653 645 641 31 
CRmg < 1. 662 664 671 672 662 649 639 636 13 

Ratios from Break Points 
CRbpe < .31 370 295 275 243 258 250 226 232 44 
CRbpg < .58 395 298,,287 251 255 245 233 220 52 

CRbpe < .52 504 462 494 488 506 505 504 505 14 
CRbpg < .77 517 504 493 525 499 511 496 495 11 

CRbpe < 1. 672 702 735 765 732 744 749 752 28 
CRbpg < 1. 669 685 740 770 733 742 758 757 34 

G & W's Results 
CR < 10% 585 470 404 321 259 21;5 148 127 150 
G < 33rd percentile 367 356 326 328 324 328 325 340 15 

Notes: me = means from eigenvalue (C ) routine, 
bp = break point 

mg= means from G method ' 

As also shown at the bottom of Table 5, Golden and Wang in,their study 
produced about the same discriminatory power (standard deviation of 15) for 
their 33rd percentile of G and much worse performance for the 10% rule 
(standard deviation and 150). What we do not know from their study is the 
degree of perturbation they used across matrix size. Assuming no truncation 
to 1/9 or 9, we can calculate that the theoretical average perturbation for 
the n(n-1)/2-(n-1) comparisons they changed will be about .66, 1., 1.2, 1.3. 
1.42, 1.5, 1.55 and 1.6 from n=3 to n=10 respectively. Exacerbating this fact 
is the larger variance which occurs at smaller matrix sizes (see Table 3). 
Thus for small n, their consistency rule will tend to reject more matrices and 
require quite accurate comparisons for acceptance. When n is larger, their 
procedure quickly stabilizes to the same approximate level of comparison 
accuracy in order for acceptance to occur. 

In this study, where each matrix size has the same the degree of perturbation 
in the validation sample (1.25), the cutoffs using mean values (CRm) have 
declining acceptance rates across matrix sizes. Only CRmg < 1. has consistent 
results (standard deviation of 13). but it not totally suitable, because it 
has an acceptance -rate much higher than the 10 percent rule. On the other 
hand, the cut-off ratios based upon the break points produce very good 
results. Both CRbpe <.52 and CRbpg < .77 (the break point between 
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Table 6 -- Average Perturbation Levels for Accepted Matrices 

Measure of 
Effectiveness 

Matrix Size and Average Perturbation Size 
Std 
Dev 3 

±1.24 
4 

±1.24 
5 

±1.24 
6 

±1.24 
7 

±1.24 
8 

±1.24 
9 

±1.25 
10 

±1.24 

CR < 10% 1.06 .97 .88 .81 .76 .75 .74 .74 . 11 
G < 33rd percentile .96 .88 .83 .80 .74 .72 .70 .70 .09 
Modified CR < 10% .88 .86 .88 .81 .76 .75 .74 .74 .11 

Ratios from Means 
CRme < .31 .97 .81 .69. .60 .57 .55 .51 .49 .16 
CRmg < .55 .96 .77 .65 .57. .58 .56 .49 .48 .15 

CRme < .47 1.03 .89 .78 .71 .71 .70 .67 .69 .12 
CRmg < .73 .98 .90 .82 .76 .70 .70 .67 .66 .11 

CRme < 1. 1.08 1.04 .98 .96 .92 .92 .91 .90 .06 
CRmg < 1. 1.05 1.04 .99 .98 .94 .93 .92 .91 .05 

Ratios from Break Points 
CRbpe < .31 .94 .81 .72 .65 .64 .62 .58 .58 . 12 
CRbpg < .58 .98 .83 .74 .67 .64 .61 .58 .56 .13 

CRbpe < .52 .99 .90 .85 .80 .77 .76 .75 .75 .08 
CRbpg < .77 1.02 .95 .87- .88 .80 .79 .77 .76 .09 

CRbpe < 1. 1.05 1.04 1.01 1.05 1.00 1.00 1.00 1.00 .02 
CRbpg < 1. 1,06 1.05 1.04 1.06 1.01 1.02 1.03 1.03 .01 

perturbation k±1 vs. k±2) have the lowest standard deviations of their 
respective measures. Moreover, the acceptance rates at this level are very 
close to the number accepted by the 10 percent rule at n>5 where the 10 
percent rule is stable. 

Another way to judge the performance of each rule is to look at the average 
perturbation level of matrices judged to be acceptable (Table 6). Again, we 
can see that the greatest stability across matrix size (lowest standard 
deviations) is produced by the cut-off ratios from break points. What is 
somewhat disheartening about all methods is that, the lower cutoff levels 
accept small-sized matrices with average perturbation higher than what they 
are supposed to discriminate against. This can be attributed to the high 
positive skewness and closeness of perturbation means at small matrix sizes. 
What is encouraging, however, is that for the highest cut-off level (the break 
point between perturbation k±2 vs. k±3), there is sufficient distance from the 
distributions to allow almost perfect discrimination. At that level, the 
number of accepted matrices is close to the 250 validation matrices from each 
of the first three perturbation levels and the average perturbation of the 
accepted matrices is almost identical to the average of those three 
distributions (i. e. equal to 1. ) 

DISCUSSION 

The simulation procedure used in this study controlled the level of departure 
from pure consistency for both developmental and validation samples. It has 
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0 shown that stable discrimination for all matrix sizes can be achieved if we 
C) use a consistency ratio based upon the breakpoint between distributions which 
C) have an average comparison perturbation of 1.5 and 2. Using these breakpoints 

C) as the upper limit for tolerable consistency, we can create a new type of 

0 ratio in which. unify represents the dividing line between acceptable and 

0 unacceptable comparisons. This new demarcation line is more stable across 

0 
matrix sizes than the 10 percent rule which is based upon departures from pure 
randomness. Moreover, the breakpOints between less severely perturbed 

C) distributions can be used by AHP sofeware designers to indicate additional 
0 gradations of more satisfactory levels of consistency. 

0 

C) Although the new measure works well for both CI' and G, there is a slight 

0 
advantage of using G as the measure of inconsistency. Not only is it easy and 

0 
quick to calculate, it also results in more uniform distributions when 
matrices are perturbed. But since these benefits are marginal, it is unlikely 

0 that programmers will make the change. 
0 

C) If the G measure is adopted, then it is recommended that it be used as a 

0 breakpoint consistency ratio. Golden and Wang's 33 percentile rule gives 

0 
relatively good discrimination, but it is also based upon unknown and 
potentially variable perturbation levels for different matrix sizes. The 

C) consistency ratio rules developed in this study are based upon known levels of 
0 perturbation for each individual comparison. 
C) 

C) Except for the first level of perturbation, the size of the disturbances from 

0 
pure consistency were values from uniform integer distributions. An alternate 

C) 
procedure would be to take each perturbation of the consistent comparison' from 
a normal or other symmetrical distribution. If non-integer comparisons Are 

0 allowed in the AHP procedure, then selection from normal distributions may 
C) better represent the finer gradations of departure from consistency. In this 

1 0 study, the consistent comparisons were non-integer to start with and the 

1 C) integer perturbations maintained the- non-integer value. 

1 C) Although we have chosen an average perturbation of between 1.5 and 2 as the 
C) breakpoint for acceptable consistency, we have very little knowledge of how 
C) people actually behave when using AHP. Tests of AHP have determined how close 

0 users come to replicating a known priority vector. If we knew in such 

C) experiments the true priority, then we should also know the true paired 

0 
comparison. Using experiments with known stimuli under different dispersions 
and matrix sizes, we should determine how close people come to emulating these 

C) true paired comparisons. That way, we will be able to specify average 
0 perturbation levels that people achieve in practice. We could then use that 
C) information to chose standards for acceptable consiStency ratios. 

C) 

0 
Finally, we must consider this new consistency ratio in light of the 

C) 
entire hierarchy. In terms of calculating the consistency ratio for 
the hierarchy, we would directly substitute the new measure into the overall 

0 calculations. The only difference is that we would use unity rather than 
C) 10 percent to determine whether sufficient consistency has been 

0 achieved. For situations where we generate priorities from incomplete 

C) comparisons, we could use prediction equations to determine CI or G. 

0 
Except for a different interpretation of the consistency ratio, there are few 

C) 
problems to introduce the new measure. 

0 
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CONCLUSIONS 

This study has approached the determination of the consistency ratio as a 
relative departure from pure consistency. The traditional measure which looks 
upon the ratio as a sufficient departure from randomness provided variable 
discrimination at different matrix sizes. By placing the upper limit of 
tolerable consistency in the denominator, we develop a ratio where unity is 
the dividing point between acceptable and unacceptable consistency. Other 
demarcations less than unity represent better levels of consistency. 

Such a new consistency ratio works well for both CI and G as the measures of 
consistency. It is also easy to implement. Although behavioral research and 
subsequent experiments may improve upon how this relative departure from 
consistency is used, there is sufficient evidence from this study to suggest 
its adoption at the present time. 
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