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ABSTRACT 

In this paper we present preliminary research on how information (or entropy) based measures 

can be used by a decision maker (DM) using the Analytic Hierarchy Process (AHP) to assess judgment 

accuracy, and to decide when to stop the process of pairwise comparisons. We introduce some 

information indices, and illustrate their use in the Analytic Hierarchy Process by means of some 

examples. Furthermore, we research the issue of how to measure the information content of redundant 

judgments, and investigate the relationship between information and degree of redundancy through the 

use of simulated judgments. 

INTRODUCTION AND OVERVIEW 

In a recent paper, Noble and Sanchez (1993) used the concept of entropy to assess the 

information content of pairwise comparison judgment matrices (PCJM's) in the Analytic Hierarchy 

Process (AIIP). The authors studied the distribution of the entropy of the priority vectors derived 

from consistent pairwise comparison judgment matrices (PCJM's) using simulation, and showed that 

the entropY is normally distributed for these type of matrices. These simulations were based on the 

results of Vargas (1982) who showed that for gamma distributed judgments the priority vectors derived 

from perfectly consistent PCJM's are Dirichlet distributed. Noble and Sanchez (1993) noted that 

information content of decision maker's (DM's) judgments can provide a useful criterion for the 

acceptability of these judgments and the corresponding PCJM's in AHP. 

In this paper we will introduce some information indices and illustrate their use in AHP for 

assessment,' of accuracy and for determining when to stop the pairwise comparisons for large dimension 

PCJM's. 

To introduce some notation, let p = (p1 p2 p3 pri) denote the priority vector derived from a 

PCJM matrix of dimension n. We note that the p.'s, E p1=1 are ratio-scale numbers representing the 
i=1 

relative preference (or importance or likelihood) of the attributes considered. We define the entropy of 
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priority vector p as 

H(e) = — Ep 1n(Pi). 
i=1 

(1) 

In information theory entropy H is defined as a measure of uncertainty about a discrete random 

variable X that can take finite values {x1, x2, ..., xn} such that Pr(X=xi) = pi [see for example, Cover 

and Thomas (1991)]. In the context of AHP, the priority pi can be interpreted as the probability (or 

the relative likelihood) that the attribute (alternative) A• will be preferred by the DM. 

Entropy of a discrete distribution with finite support is always nonnegative, and the minimum 

value of II is 0 if pi=0 or pi=1 for some i. It is well known that entropy is a concave function and its 

maximum is reached at the uniform distribution pi=1/n for all i. The uniform distribution is known 

as the maximum entropy distribution, and its entropy is given by 

H*(1/n, ..., 1/n) = — E (1/n) In(l/n) = In(n). (2) 
1=1 

We note that 11* > II implies that E pi In(pi) > In(l/n) and the term 
i=1 

E pi ln(pi) 

is known as Shannon's information measure. 

(3) 

The concept of maximum entropy (ME) plays an important role in the comparison of the 

information content of probability distributions by providing benchmarks. In the context of AHP, the 
information content of priority vectors from different PCJM's can be compared relative to their 
entropy difference from the uniform priority vector associated with the initial PCJM of Vs. The 
entropy difference 

— II) = E pi In(pi) — ln( 1/n) 
i=1 

(4) 

is used by Nobles and Sanchez (1993) as the measure of information content of priority vectors. We 
note that entropy difference (Er— H) is scale variant and represents the information increase as a 
result of using a PCJM different from an initial PCJM of Ps. In other words the difference (II* — H) 
measures the additional amount of information added by a DM to a PCJM after an initial PCJM 
consisting of only I's. 

In what follows we will introduce other information measures and illustrate how they can be 
used in addressing important issues in AHP. 

1 
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INFORMATION MEASURES FOR DISCRIMINATION 

An important issue during the pairwise comparison process in AHP is to determine whether 

the priority vectors change significantly as a result of the pairwise comparisons provided by the 

DM. As noted by Harker (1985) an important issue during the pairwise comparison process is whether 

to stop making pairwise comparisons. Especially, in cases where the dimension of the PCJM's are 

large, it is desirable to develop a stopping rule. Harker (1985) has suggested some stopping rules in 

addressing this problem. It is possible to develop stopping rule similar to those suggested by Harker 

(1985) Using an information measure. 

A well known information index for measuring discrepancy between two discrete probability 

distributions p = p2 p3 pn) and q = (q1 q2 q3 qn) is the relative entropy (also referred to 

as cross entropy) given by 
Pi 

I(p: q) = E InH 
qi (5) 

i=1 

which is known as the Kullback-Leibler (KL) discrimination measure. I(p: q) is always nonnegative 

and is equal to zero if and only if p=q [see Cooke (1991)]. 

We note that for the case when q is the uniform distribution, then Hp: q) reduces to the 

entropy difference (11* —H) which was used by Nobles and Sanchez (1993) as the measure of the 

information content of the resulting priority vectors. A new information discrimination (ID) index 

related to the KL measure was introduced in Soofi, Ebrahimi and Habibullah (1994) as 

ID(p: p*) = 1 — exp[—I(p: p*) = 1 — exp(H*— H) , (6) 

where p* is the uniform distribution. The ID index takes values between 0 and 1 where the values 
closer to 1;imply a higher information content for p. 

We note that the KL measure can be used to assess whether a priority vector change 

significantly as a result of the pairwise comparisons provided by the DM. This can be achieved by 

measuring4he KL distance between the two priority vectors during the pairwise comparison process. 

If pk denote the priority vector after the kth judgment and pk_i  is the priority vector after the (k-1)st 

judgment, then we can obtain the KL measure 

I(pk: pk_ i) = E pik InG3I 1Pik
i=1 

(7) 

and basedi on its magnitude determine whether to stop after the kth judgment. If the value of 

I(pk: pk_i) is small then it implies that the two priority vectors are close to each other and one can 

decide to stop the questioning process. 
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We will apply this idea to an example considered by Harker (1985). The example uses the 

AHP priorities to predict the relative distance of a set of six cities from Philadelphia. Thus, the 

minimum number of needed judgments is 5 (no redundancy) and the maximum number of judgments 

is 15 (maximum redundancy). An example of priorities for all these cases of different redundancy are 

given in Harker (1985). For the given example, the author, using what he refers to as the 5% stopping 

rule, determines to stop after the 6th judgment. In Table 1 below, we present the KL measures 

I(pk: pk_i ) for k=5,6, ..., 15 which are computed using the Harker's data. We note that the KL 

measure associated with k=5 represents the information discrepancy between the no redundancy case 

and the case of no judgment (PCJM full of l's). Thus the initial value of KL measure is high. But 

JUDGMENT, k i(Pk: Pk-1) 
5 0.5356 
6 0.0265 
7 0.0004 
8 0.0147 
9 0.0099 
10 0.0302 
11 0.0071 
12 0.0020 
13 0.0001 
14 0.0000 
15 0.0002 

Table 1: Using KL measure as a stopping criterion. 

after the 7th judgment the value of the KL measure is very small, which may suggest the termination 

of the questioning process (as in the case of Harker's rule after the sixth judgment). We note that we 

can also use the difference in the ID index as an equivalent criterion for the stopping problem. The 
(0,1) scale of the ID index may provide an easier way to interpret the information change. 

ASSESSMENT OF ACCURACY USING KL MEASURE 

In the previous section we illustrated the use of KL discrimination measure as a criterion to 
determine when to stop during the pairwise comparison process in AHP. Another important issue in 
AHP is to derive "accurate" priorities. This is especially important in cases where AHP is used to 
assess the probabilities (or relative likelihoods) of n events. In the case where the actual event is 
observed, one can assess the accuracy of the underlying forecasting mechanism. Evaluation of the 
probability forecasts is an important issue in fields such as risk analysis, where the forecasts are heavily 
dependent on expert judgments [see for example, Cooke (1991)]. 
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Evaluation of the accuracy ARP priorities derived from redundant judgments have been 

recently addressed by Forman (1993) who used an experiment where individuals made judgments about 

the relative sizes of geometric shapes. The actual relative sizes of the five geometric shapes were known 

and these were compared to those derived by individuals using no redundancy (i.e., only the minimum 

number of needed judgments; in his case four were used) and the full redundancy (i.e., the maximum 

number of 10 judgments). There were fifty participants in the experiment. The results of the 

experiment are summarized in Forman (1993), who used an average quadratic score (or average mean 

square error) to compare the accuracy of the priorities derived from the cases of no and full 

redundancy. The author found that the average mean square error without redundancy was more than 

four times higher than the average mean square error with full redundancy. 

In what follows we will use the KL discrimination measure and will analyze the experimental 

data obtained by Forman (1993) to investigate the relationship between accuracy and level of 

redundancy. If we let p denote the estimated priority vector from the experiment and q denote the 

actual priority vector (in this case representing the actual relative sizes of the geometric shapes) then 

the KL measure I(p: q) defined in (5) provides a measure of accuracy. The advantage of this measure _ - 
is that as the sample size increases one can show that an asymptotic result can be used for the 

distribution of the KL measure. As shown in Cooke (1991), if the priority vector p is estimated based 
on M individual priority vectors, then the quantity' 

2 x M x I(p :q) (8) 

is approxiMately a x2 random variable with (n-1) degrees of freedom, where n is the dimension of the 
priority vector. We note that this distribution can be used to define a statistical test in the frequentist 
sense. 

We next apply this idea to the experimental data given by Forman (1993). In Table 2 below 
we present the estimated (average of M=50 priority vectors) priority vector p for the cases of no 
redundancy and full redundancy and the actual priority vector q. The KL measure for the full 
redundancy case was KL= 0.003 and using (8) we obtained Prob(KL<0.003)=0.0102 implying that it 
is very unlikely to observe a KL value less than 0.003. For the no redundancy case the KL measure 
was KL=0.019 and the probability was obtained as Prob(KL<0.019)=0.2457 which implies that KL is 
different than zero for the no redundancy case. Thus, our findings imply that the full redundancy case 
provides a more accurate priority vector. 
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SHAPE ACTUAL q NO REDUNDANCY: p FULL REDUNDANCY: p 

A 0.475 0.500 0.529 
B 0.049 0.050 0.076 
C 0.232 0.236 0.174 
D 0.151 0.139 0.128 
E 0.093 0.076 0.093 

Table 2: Actual and Estimated Priorities for Geometric Shapes. 

REDUNDANCY AND INFORMATION 

We finally present preliminary results concerning the relationship between redundancy and the 

level of information content (as defined by Noble, and Sanchez in (1993)) in the PCJM's. Simulations 

were run in which the first row of a PCJM was randomly filled up. Then redundant matrices at levels 

4, 5 and 6 were created as follows. For level A, entry (2,3) was filled up in close -consistency with the 

first row, but entries (2,4) and (3,4) were filled up as suggested in Harker (1985); namely, the 

geometric mean of the intensity of all paths in the directed graph associated with the partially 

completed matrix which connects alternatives 2 and 4, and 3 and 4, respectively. (As noted by Harker 

in his paper, "... this approximation scheme in some sense mimics what the decision makers would 

have to perform if he or she were forced to complete a given comparison...".) For level 5, entries (2,3) 

and (2,4) were filled up in close consistency with the first row, but entry (3,4) as suggested in Harker 

(1985). Finally, for level 6, entries (2,3), (2,4) and (3,4) were filled up in close consistency with the first 

row. In the context of these simulations, "close consistency" mean as follows: take for example entry 

(2,3); to be perfectly consistent, entry (2,3) is exactly the ratio of entry (1,3) divided by entry (1,2); 
but instead of forcing perfect consistency, we allowed entry (2,3) to be the closest element in the set 

{1/9, 1/8, 1/7, 1/6, 1/5, 1/4, 1/3, 1/2, 1, 2, 3,4, 5, 6, 7, 8, 9) 
to the ratio of entry (1,3) divided by entry (1,2). The results appear to indicate that the information 
content of the resulting vector of priorities is rather insensitive to the level of redundancy. Each run 
consisted of the creation of 1000 consistent matrices (in the sense of Saaty). Level 4 resulted in a mean 
entropy of 0.133101, Level 5 resulted in a mean entropy of 0.133919, and Level 6 resulted in a mean 
entropy of0.134010. Thus, the higher the level, the higher the entropy, but to a very minor degree. 
Obviously, more simulations for larger matrices is called for in a more complete analysis. 
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