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ABSTRACT 

 
Pairwise comparison is frequently used in multi-criteria decision making problems. In the 
analytic hierarchy process (AHP), the local weights inferred from pairwise comparison 
matrices by mainly the principal eigenvector method or the geometric mean method. 
Recently, Blanquero et al. have shown that the weights derived from geometric mean 
method are Pareto optimal (or efficient) while the eigenvector method is not from the 
multi-objective optimization view point. They have also shown that the equivalency 
between Pareto optimal weights and the strong connectivity of the associated directed 
graphs. In this paper, we first give another proof of the equivalence theorem based on 
elementary graph theory. Based on the proof, we propose a new method inferring Pareto 
optimal weights, which is useful to modify the eigenvector method. We also discuss 
some properties of Pareto optimal weights based on graph theories.  
 
Keywords: AHP, pairwise comparison, Pareto optimality, graph theory. 
 
1. Introduction 
Pairwise comparison has been commonly used in decision making problems and various 
methods have been proposed for inferring the weights of alternatives from the results of 
pairwise comparisons. In the analytic hierarchy process (AHP) proposed by Saaty in late 
1970s, after constructing the hierarchy structure of the problem, pairwise comparisons are 
performed to evaluate local weights.  
 
In AHP, local weights are considered to be ratio scale, and hence, the pairwise 
comparison value 𝑎"# between the alternatives 𝑖 and 𝑗 evaluate the ratio of the weights 
between 𝑤"  and 𝑤#  approximately, that is, 𝑎"# ≈ 𝑤" 𝑤#⁄ . The results of pairwise 
comparisons are summarized in the so-called pairwise comparison matrix 𝐴, as follows 

𝐴 = +

1 𝑎-. ⋯ 𝑎-0
𝑎.- 1 𝑎.0
⋮ ⋱ ⋮
𝑎0- 𝑎0. ⋯ 1

3 , 

where we usually assume that the reciprocal property, such that, 𝑎#" = 1 𝑎"#⁄  holds for 
𝑖 ≠ 𝑗. From pairwise comparison matrices 𝐴, there have been various weight inferring 
methods are proposed. Among these, the principal eigenvector method and the (row) 
geometric mean method are most famous and widely used, where the principal 
eigenvector method adopts the local weight vector 𝑤 = (𝑤-,⋯ ,𝑤0)8 as the (normalized) 
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principal eigenvector of the pairwise comparison matrix 𝐴 and the geometric mean 
method adopts as 𝑤" = 9∏ 𝑎"#0

#;- <- 0⁄
. 

 
From the optimization point of view, inferring local weights from a pairwise comparison 
matrix is considered to solve multi-objective optimization problem, 

min
@AB

C
𝑤"
𝑤#
− 𝑎"#C

",#;-,⋯,0,"E#
. 

In this formulation, the notion of Pareto optimality (or efficiency) is practically and 
theoretically important, where the local weight 𝑤 > 0 is Pareto optimal if there is no 
positive vector 𝑤I > 0, such that, the inequalities J𝑤I" 𝑤I#⁄ − 𝑎"#J ≤ J𝑤" 𝑤#⁄ − 𝑎"#J hold for 
𝑖 ≠ 𝑗 and at least one inequality holds strictly. 
 

Recently, Blanquero ed al. have proposed the LP based method for testing the Pareto 
optimality of the given local weight 𝑤. They also have given the equivalence theorem 
between the Pareto optimality and the strong connectivity of the associated directed graph, 
but they have not given methods asserting Pareto optimality of local weights. 
 
In this paper, we first give another proof of the equivalent theorem proven by Blanquero 
ed al. The proof is strongly depend on the graph theory, and, based on the proof; we 
propose some methods for inferring Pareto optimal weights from pairwise comparison 
matrices, which are also shown to be practically useful for making the principal 
eigenvector Pareto optimal. Furthermore, we give some properties based on the above 
mentioned elementary proof, and discuss the relationship between the eigenvector 
method and Pareto optimality by some numerical experiences. 
 

2. Preliminaries 
In this section, we summarize some notations and some properties from graph theories 
used in this paper. A graph 𝐺 = (𝑁, 𝐸) consists of the set of nodes 𝑁 = {1.2.⋯ , 𝑛} and 
the set of arcs 𝐸 = {(𝑖, 𝑗) ∈ 𝑁 × 𝑁}. A graph is called directed graph if the arcs 
(𝑖, 𝑗)	and	(𝑗, 𝑖) ∈ 𝐸  are distinguished and called undirected graph if otherwise. A 
directed path connecting from a node 𝑖 to a node 𝑗 consists of a sequence of directed arcs 
(𝑖, 𝑘-), (𝑘-, 𝑘.),⋯ , (𝑘Y , 𝑗) ∈ 𝐸, which is called undirected path (or simply called a path) 
if these directions of arcs are ignored. A (directed) cycle is a (directed) path if two nodes 𝑖 
and 𝑗 are identical. A (directed) path is called simple if it does not contain a cycle. A 
directed graph is called strongly connected if there are directed paths between all node 
pairs (𝑖, 𝑗) ∈ 𝑁 × 𝑁, and called weakly connected if there exist undirected paths between 
all node pairs. A weakly connected directed graph is often called complete.  
 
A graph 𝐺′ = (𝑁′, 𝐸′) is called a subgraph of a graph 𝐺 if 𝑁′ ⊆ 𝑁 and the set of arcs 𝐸′ 
consists of all arcs 𝑁′ × 𝑁′ in 𝐸. If a subgraph 𝐺\ is strongly connected, we call it a 
strongly connected component. It is known that strongly connected components of a 
complete directed graph make a lattice with the maximum element. 
 
3. Main Results 
In this section, we first show the proof of the equivalence between a Pareto optimal local 
weight 𝑤 > 0  and the strong connectivity of the associated directed graph. This 
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equivalence has already shown by Blanquero et al., but our proof is based on elementary 
graph theory and then proposes a method deriving Pareto optimal weights from a 
pairwise comparison matrices based on the proof. 
 
For a given 𝑛 × 𝑛  pairwise comparison matrix 𝐴  and a positive vector 𝑤 > 0 , we 
construct a directed graph 𝐺(𝑤) = 9𝑁, 𝐸(𝑤)<, such that, the node set is 𝑁 = {1,2,⋯ , 𝑛} 
and the arc set 𝐸(𝑤) ⊆ 𝑁 × 𝑁 includes an arc (𝑖, 𝑗) if and only if 𝑤" 𝑤#⁄ − 𝑎"# ≥ 0. From 
the construction of the graph 𝐺(𝑤), there exists either a directed arc (𝑖, 𝑗), (𝑗, 𝑖) or both, 
and hence, the graph 𝐺(𝑤) is weakly connected (or complete) for all positive 𝑤 > 0. 
 
Theorem 1. For a given pairwise comparison matrix 𝐴 = 9𝑎"#< and a given positive 
vector 𝑤 = (𝑤-,⋯ ,𝑤0)8 > 0, the weights 𝑤 is Pareto optimal for an associated pairwise 
comparison matrix 𝐴 if and only if the directed graph 𝐺(𝑤) is strongly connected. 
 
Proof. (only if part) Suppose that the graph 𝐺(𝑤) is not strongly connected. Then there 
exists nodes 𝑖, 𝑗 ∈ 𝑁, such that there is no directed path from 𝑖 to 𝑗 in 𝐺(𝑤), and more 
generally, the node set 𝑁 is partitioned into two sets 𝑁" and �̂�", such that, 𝑁" ∪ �̂�" = 𝑁, 
𝑁" ∩ �̂�" = ∅ and 𝑁" is the node set having a direct path from the node 𝑖 (including 𝑖 
itself) and �̂�" is not. From the construction rule of 𝐺(𝑤), inequalities 𝑤" 𝑤#⁄ − 𝑎"# < 0 
hold for 𝑖 ∈ 𝑁"  and 𝑗 ∈ �̂�" . Setting the positive parameter 𝑡  as 

𝑡 = max e 𝑤"𝑎"#𝑤#
f	𝑖 ∈ 𝑁"	and	𝑗 ∈ �̂�"g , 

and making a new positive vector �̂� > 0, such that, �̂�" = 𝑤" 𝑡⁄  for 𝑖 ∈ 𝑁" and �̂�# = 𝑤#  
for 𝑗 ∈ �̂�". Then, it is easy to see that |�̂�i �̂�Y⁄ − 𝑎iY| = |𝑤i 𝑤Y⁄ − 𝑎iY| holds for 𝑘, 𝑙 ∈ 𝑁" 
or 𝑘, 𝑙 ∈ �̂�"  and 𝑤" 𝑤#⁄ − 𝑎"# < �̂�" �̂�#⁄ − 𝑎"# < 0  holds for 𝑖 ∈ 𝑁"  and 𝑗 ∈ �̂�" , because 
0 < 𝑡 < 1. This shows that the weight vector 𝑤 is not Pareto optimal. 
 
(if part) Suppose that the graph 𝐺(𝑤) is strongly connected but the weight vector 𝑤 is not 
Pareto optimal. Then without the loss of generality, we can assume as follows. There is a 
weight vector �̂� > 0  where J�̂�" �̂�#⁄ − 𝑎"#J ≤ J𝑤" 𝑤#⁄ − 𝑎"#J  holds for 𝑖, 𝑗 ∈ 𝑁  and 
|�̂�- �̂�.⁄ − 𝑎-.| < |𝑤- 𝑤.⁄ − 𝑎-.| with �̂�- = 𝑤- (This holds because the weight vector is 
unique up to positive multiple), and there is a simple directed cycle such as 
(1,2), (2,3),⋯ , (𝑘 − 1, 𝑘), (𝑘, 1).  
 
From the above assumptions, the inequality �̂�. > 𝑤. must hold because 𝑤- 𝑤.⁄ − 𝑎-. >
0 by the existence of a directed arc (1,2). To keep the Pareto optimality condition, this 
leads to the inequality �̂�l > 𝑤l. Same arguments show that �̂�" > 𝑤" must hold for 𝑖 =
2,3,⋯ , 𝑘, in particular �̂�i > 𝑤i , but this is impossible because we have 0 < 𝑤i 𝑤-⁄ −
𝑎i- < �̂�i �̂�-⁄ − 𝑎i-.                                                                                                Q.E.D.  
 
Let consider the case that the pairwise comparison value 𝑎"# represent an interval scale, 
that is, 𝑎"# approximates the differences between 𝑤" and 𝑤# , 𝑎"# ≈ 𝑤" − 𝑤# . In this case, 
if the construction of the graph 𝐺(𝑤) is modified such that an arc (𝑖, 𝑗) is in 𝐸(𝑤) if and 
only if 𝑤" − 𝑤# − 𝑎"# ≥ 0, then the similar argument of the above proof shows the 
equivalence between the strong connectivity of 𝐺(𝑤) and the Pareto optimality of the 
weight vector 𝑤  (Of course the definition of Pareto optimality should be changed 
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according to the interval scale). This also shows the Pareto optimality of the geometric 
mean method. 
 
Corollary 2. The positive weight vector 𝑤 > 0 derived by the (row) geometric mean 
method from a pairwise comparison matrix 𝐴 = 9𝑎"#< is Pareto optimal. 
 
From the proof of the theorem 1, in particular from the only if part, we can construct 
several methods for deriving a local weight vector 𝑤 > 0 from a pairwise comparison 
matrix 𝐴 = 9𝑎"#<. The following algorithm is only one candidate of these. 
 
Algorithm 
Step 0: Set the initial positive vector 𝑤 > 0, and construct the associated directed graph 

𝐺(𝑤). 
Step 1: If 𝐺(𝑤) is strongly connected, then STOP. The current weight 𝑤  is Pareto 

optimal. Otherwise, select two strongly connected components 𝐺- = (𝑁-, 𝐸-) and  
𝐺. = (𝑁., 𝐸.) (Without the loss of the generality, we assume that the inequalities 
𝑤" 𝑤#⁄ − 𝑎"# < 0 hold for 𝑖 ∈ 𝑁- and 𝑗 ∈ 𝑁.). 

Step 2: Select a positive parameter 𝑡 > 0 from the interval  
min e 𝑤"

𝑎"#𝑤#
f	𝑖 ∈ 𝑁-	and	𝑗 ∈ 𝑁.g ≤ 𝑡 ≤ max e 𝑤"𝑎"#𝑤#

f	𝑖 ∈ 𝑁-	and	𝑗 ∈ 𝑁.g, 

and set 𝑤" ← 𝑤" 𝑡⁄  for 𝑖 ∈ 𝑁-. Return to Step 1. 
 
There are some freedoms to implement the above algorithm. In particular, how to choose 
a parameter  𝑡 > 0 in Step 2 influences the performance and the results of the algorithm. 
We call setting 𝑡 = maxn𝑤" 𝑎"#𝑤#⁄ o  as minimal modification, 𝑡 = minn𝑤" 𝑎"#𝑤#⁄ o  as 
maximal modification, and 𝑡 = 9maxn𝑤" 𝑎"#𝑤#⁄ o +minn𝑤" 𝑎"#𝑤#⁄ o</2  as average 
modification. 
 
The results of some numerical experiments will be shown in the oral presentation. 
 
4. Concluding Remarks 
In this paper, we have shown an equivalent theorem of a Pareto optimal weight and the 
strong connectivity of the associated directed graph. The theorem itself has been already 
shown by Blanquero et al. but our proof is based on elementary graph theory and it gives 
an algorithm ensuring Pareto optimal local weight vectors. 
 
From our graph theoretical analysis, we can derive some properties of Pareto optimal 
vectors for a given pairwise comparison matrix, and also we have some open problems 
mainly in the view of convex analysis. We list some of these as following. 
 
� From the if part of the proof of the theorem, it is easily to show the weakly Pareto 

optimal theorem, that is, the weight vector 𝑤 > 0 is weakly Pareto optimal if and 
only if the graph 𝐺(𝑤) has no directed cycle. 

� We can also show the boundedness of the normalized weight vector (e.g. 𝑤- = 1 is 
fixed) by the same arguments in the if part of the theorem. 

� For a given Pareto optimal weight vector 𝑤∗ > 0, the region of the weight vectors 𝑤 
having the same directed graph 𝐺(𝑤∗) (this means that all direction of the arcs are 
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same) forms a polyhedral convex cone (without the origin) in the nonnegative 
orthant. But whether the all Pareto optimal form a convex cone is not known for the 
case of 𝑛 ≥ 4. 

� By using the ternary diagram proposed by Mizuno and Taji, Pareto optimal vectors 
form a triangle (and hence, convex region) in a ternary diagram for the case of 𝑛 =
3.But this also shows that the region of Pareto optimal vectors is relatively large. So 
which should be selected from the Pareto optimal region is one of important 
practical issue. 
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