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1 Introduction 

The application of the Analytic Hierarchy Process (AHP) for group decisions is well 
documented (Saaty and Vargas, 2007). Within this study, we will provide a comprehensive 
overview over AHP group decision making. The core research goal is the systematic 
identification of homogenous groups which is of special interest if we have a large number of 
decision makers. We will present a simple but effective methodology on clustering AHP 
group evaluations. Within our approach no modification of AHP theory is necessary as 
suggested by other authors (e.g. Song and Hu, 2009) in order to identify homogenous groups 
of decision makers. If we have only a small group of decision makers, the identification of 
similarities and differences between the individual evaluations is easy. The analysis of the 
heterogeneity can be done intuitively. However, if the number of decision makers rises, this 
intuitive way of building groups of “similar” evaluations gets more and more difficult. A 
better way of grouping individual judgments will be presented within this contribution.  
Saaty’s fundamental scale (or any other scale) can be used for subjective evaluations of 
decision makers; the usual (deterministic) approach of approximating weights out of pairwise 
comparisons is used, the eigenvector method (Basac and Saaty, 1993). As a consequence, 
geometric means method will be used to aggregate individual decisions (Wu et al., 2008). To 
identify decision makers with similar evaluations, a well-established distance measurement in 
statistics is applied (Squared Euclidian Distance). 
We will present a numerical example evaluating a simple decision hierarchy. The outcome of 
this experimental data clearly shows that the proposed AHP clustering methodology can be 
easily applied with large numbers of decision makers. The (computer aided) analysis is done 
when the importance of individuals within the group is equivalent. Other authors discussed 
aggregation methodologies where importance of individuals is non-equivalent (e.g. Beynon, 
2005). However, this can be considered to be illusive if we have a large number of decision 
makers (e.g. opinion polls) where the influence of each individual on the final decision is 
usually equal. These evaluations are usually simplified by offering only yes-no pre-
formulated answers. With our methodology, the identification of homogenous groups of 
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decision makers is simple. As a consequence, the evaluation of decision hierarchies instead of 
simple yes-no evaluations would help to get much deeper insights into the true opinions of 
communities. 
 
2 Group decision making and the AHP 

Concerning literature (Altuzarra et al., 2007) there are two principal possibilities of AHP 
grouping:1 (1) aggregation of individual judgments and (2) the aggregation of individual 
priorities (aggregating the approximated priorities of decision makers). Both cases should 
deliver more or less comparable results (in case of more or less consistent evaluations). 
However, as group decisions usually are made in a way that individual judgments are not 
accessible for further interpretation, possibility (2) – where pairwise comparison matrices are 
aggregated – seems to be the more relevant way of aggregation. Because of the axioms of 
AHP (Saaty, 1980), only reciprocal pairwise comparison matrices fulfilling the condition  
 

aij =
1
aji  

(1) 

 
are acceptable. Therefore, the geometric mean is used to aggregate pairwise comparisons. 
 
However, principal questions arise when larger groups of decision makers deliver evaluations: 
What if the individual judgments differ significantly? Can an aggregated result then represent 
a reliable consensus representing all individual judgments? The last question can definitely be 
negated. Only think about the following simplified case, where two decision makers deliver a 
pairwise comparison for element i and j. The first one evaluates aij = 9, the second one aij = 1/9 
(the absolute opposite). In this extreme case, the aggregated evaluation would be a’ij = 1 
representing none of the original evaluations. Therefore, we propose in the following section 
an easy and reliable way of including the distance between individual evaluations using a 
common way of distance metrics. This is especially relevant if we have a larger number of 
decision makers and complex decision hierarchies, where the individual differences cannot be 
assessed intuitively. 
 
 
3 AHP Clustering 

To present our principle clustering approach we use a numerical example consisting of 
evaluations of 20 decision makers (dmi). The decision hierarchy consists of 5 attributes 
(element E1 to E5). The priorities w(Ei) of the individual evaluations of this hierarchy can be 
taken from Table 1. The experimental data2 are all consistent with CR<0,1 (Saaty, 1980). 
Further information concerning the decision hierarchy and subjective evaluations can be 
found at Meixner (2009). 
 

                                                
1  We leave out other possibilities of getting group decisions where e.g. the “group first unanimously agrees 

upon criterion weights” (Van Den Honert and Lootsma; 1996: they mention different possibilities of getting a 
group consensus). 

2  The data were randomly selected from a larger sample (Meixner, 2009) to prove the principal applicability of 
the presented approach. 
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Table 1: Individual priorities of dmi 

 
Decision 

maker 
Priorities of attributes  

CR w(E1) w(E2) w(E3) w(E4) w(E5) 
dm1 0,129 0,146 0,384 0,099 0,241 0,049 
dm2 0,086 0,355 0,312 0,050 0,196 0,091 
dm3 0,256 0,150 0,460 0,046 0,087 0,067 
dm4 0,194 0,250 0,293 0,118 0,145 0,065 
dm5 0,126 0,212 0,283 0,149 0,231 0,021 
dm6 0,140 0,257 0,242 0,097 0,264 0,029 
dm7 0,248 0,301 0,201 0,041 0,209 0,083 
dm8 0,093 0,299 0,265 0,134 0,209 0,063 
dm9 0,273 0,390 0,251 0,047 0,040 0,047 
dm10 0,055 0,133 0,404 0,029 0,378 0,090 
dm11 0,067 0,284 0,491 0,064 0,094 0,022 
dm12 0,123 0,337 0,223 0,115 0,202 0,096 
dm13 0,119 0,146 0,377 0,065 0,292 0,063 
dm14 0,060 0,270 0,393 0,092 0,186 0,036 
dm15 0,153 0,237 0,281 0,135 0,195 0,027 
dm16 0,166 0,364 0,298 0,106 0,067 0,038 
dm17 0,157 0,305 0,276 0,101 0,161 0,036 
dm18 0,282 0,169 0,344 0,063 0,141 0,045 
dm19 0,064 0,202 0,360 0,135 0,239 0,040 
dm20 0,057 0,251 0,344 0,121 0,226 0,004 

 
Distance metrics. Obviously, the individual priorities are quite comparable in some cases 
(e.g., dm1 and dm13), and sometimes differ significantly (dm1 and dm7). In other words, the 
distance between dmi and dmj is quite low in some cases and large in others (where i ≠ j).  
 
For this purpose, it is necessary to measure the distance between two subjects. There are 
different approaches available to approximate the distance between two clusters. We used the 
Squared Euclidian Distance, but any other distance measurement could be taken as well 
(Manhatten, Euclidian Distance, etc.). Further, similarity measure of two subjects could be an 
adequate approach, too (Pearson Correlation, Spearman Correlation, etc.).  
 
The general formula using the Squared Euclidian Distance dmin with m elements and n 
decision makers is: 
 

dmin = min wi Ek( )−wj (Ek )⎡⎣ ⎤⎦
2

k=1

m

∑
 

for all i, j = 1 … n, i ≠ j (2) 

 
In a first step, the minimum distance dmin can be found between dm5 and dm15 with 
dmin = 0.0028060897308 (the maximum distance amounts to 0.25168). 
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Table 2: Initial distance matrix 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
2 0.055                   3 0.048 0.105                  4 0.033 0.030 0.050                 5 0.017 0.034 0.083 0.015                6 0.033 0.024 0.107 0.020 0.008               7 0.076 0.042 0.105 0.024 0.042 0.021              8 0.041 0.012 0.109 0.018 0.010 0.009 0.037             9 0.141 0.064 0.104 0.044 0.101 0.088 0.040 0.077            10 0.030 0.092 0.129 0.107 0.062 0.066 0.135 0.088 0.252           11 0.057 0.048 0.055 0.062 0.078 0.098 0.131 0.070 0.114 0.113          12 0.064 0.014 0.127 0.021 0.021 0.011 0.023 0.005 0.057 0.117 0.092         13 0.004 0.058 0.068 0.048 0.024 0.033 0.079 0.048 0.163 0.014 0.074 0.071        14 0.023 0.016 0.069 0.031 0.025 0.036 0.076 0.021 0.103 0.060 0.019 0.038 0.031       

15 0.023 0.027 0.070 0.005 0.003 0.008 0.029 0.008 0.071 0.080 0.069 0.015 0.033 0.024      
16 0.086 0.026 0.084 0.020 0.054 0.054 0.045 0.031 0.019 0.179 0.056 0.027 0.108 0.043 0.034     17 0.044 0.013 0.076 0.005 0.017 0.014 0.020 0.007 0.039 0.109 0.061 0.007 0.055 0.025 0.007 0.013    18 0.037 0.077 0.018 0.020 0.046 0.055 0.044 0.069 0.068 0.114 0.083 0.075 0.051 0.065 0.034 0.061 0.041   19 0.009 0.035 0.080 0.033 0.010 0.025 0.079 0.020 0.138 0.037 0.050 0.043 0.014 0.010 0.017 0.071 0.034 0.064  20 0.018 0.019 0.088 0.028 0.011 0.019 0.066 0.010 0.115 0.049 0.043 0.027 0.023 0.005 0.015 0.052 0.022 0.068 0.003 

 
Aggregation. In a next step, this two subjects will be grouped. As mentioned above and 
shown by Aczél and Saaty (1983), the best aggregation procedure is the geometric mean. The 
pairwise comparison matrix A5 and A15 3 
 

A5 =

1 0.83 0.33 0.77 0.55
1.2 1 1 1.5 0.91
3 1 1 1.5 1.5
1.3 0.67 0.67 1 .5
1.8 1.1 0.67 2 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

,A15 =

1 0.67 0.5 1 1
1.5 1 1 2 1
2 1 1 3.1 1
1 0.5 0.32 1 1
1 1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 
 
are aggregated to A5,15: 

A5,15 = A5,A15∏( )0.5 =
1 0.75 0.41 0.88 0.75
1.34 1 1 1.73 0.95
2.45 1 1 2.16 1.23
1.14 0.58 0.46 1 0.71
1.34 1.05 0.82 1.41 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 
 
Priorities are approximated using the Eigenvector method (Saaty, 1980) and a new distance 
matrix is calculated where dm5 and dm15 are now represented by cluster dm5,15 (Table 3). 
 

                                                
3  Because of the nature of the original study (Meixner, 2009) the respondents evaluating the hierarchy had the 

possibility to use a real interval scale from 1 to 9 (1 to 1/9) with any intermediate values (e.g. 1.23) based on 
the AHP fundamental scale (Saaty, 1980) instead of only choosing between integer numbers 1, 2, 3, 4, 5, 6, 
7, 8, 9. The respondents had therefore the possibility to assess even more accurate evaluations; the semantic 
meaning of the scale was kept.  
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Table 3: Aggregated weights w(Ei) 

 w(E1) w(E2) w(E3) w(E4) w(E5) CR 
dm5 0.126 0.212 0,283 0,149 0,231 0.021 
dm15 0,153 0,237 0,281 0,135 0,195 0.027 
dm5,15 0,140 0,223 0,281 0,141 0,212 0.008 

 
 
Full Clustering. This process is repeated until all subjects dmi are aggregated into one cluster. 
If more than two subjects are aggregated, the initial pairwise comparison matrices are 
aggregated by use of the geometric mean. E.g., in step 7 group dm5,15 and dm6 have the 
minimum distance dmin. A5, A15, and A6 are aggregated to A5,6,15 
 

A5,6,15 = A5,A6,A15∏( )1 3 =
1 0.64 0.49 0.15 0.57
1.56 1 1 1.79 1,06
2.03 1 1 2.38 1.14
0,87 0.56 0.42 1 0.59
1.75 95 0.87 1.69 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 
 
Error measurement. In order to select the “right” number of clusters where  
(1) information loss is acceptable and  
(2) error within clusters is low while the distance between clusters is high 
it is necessary to measure the error occurring when two groups are accumulated. In our 
opinion an easy and appropriate way of evaluating the clustering error is the following: we 
simply sum up all distances between subjects that are grouped. Adding up the distances 
results in the total sum of distances (TSD) which will increase during all aggregation steps 
(unless evaluations of dmi and dmj are totally equal).  
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Figure 1: Number of Clusters and TSD 
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Selection of number of clusters. It is now up to the researcher to select the most appropriate 
number of clusters by using TSD (Figure 1). Usually, one will select a cluster solution before 
a significant rise of TSD. TSD is significantly increasing from 7 to 6 clusters and then from 4 
to 3, from 3 to 2 and when all subjects are aggregated into one cluster. In our case, we further 
analyze only the outcome of the 4-cluster solution. However, this is up to the researcher and it 
is a tradeoff between minimum information loss (TSD) and the chance for a reliable and 
appropriate interpretation of clusters.  
 
As we can see from the AHP clustering dendogram (Figure 2) where the cluster steps and the 
related TSD (horizontal connecting lines) are visualized, we get one big cluster with subjects 
dm5,15,6,4 …11 and 3 small clusters dm7,9,16, dm3,18, and dm10. At least the last “cluster” 
consisting only of dm10 may be considered to be an outlier. 
 

 
 
Figure 2: AHP clustering dendogram 

 
Approximation of weights for cluster 1 to 4 show that there are considerable differences 
between the clusters. For cluster 1 E3 seems to be of special importance, while cluster 2 
mainly reflects on E2. Priorities for all clusters and the complete aggregation can be taken 
from Table 4. TSD amounts to a maximum of 0.188 for Cluster 1 compared to 0.494 if all 
subjects were aggregated into one group. 
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Table 4: Cluster analysis – approximation of w(Ei), CR and TSD 

 
w(E1) w(E2) w(E3) w(E4) w(E5) CR TSD 

Cluster 1 0,107 0,255 0,329 0,104 0,205 0,002 0,188 
Cluster 2 0,233 0,367 0,255 0,062 0,083 0,012 0,037 
Cluster 3 0,275 0,159 0,401 0,055 0,111 0,035 0,009 
Cluster 4 0,055 0,133 0,404 0,029 0,378 0,090 0,000 
Complete aggregation 0,133 0,259 0,340 0,088 0,181 0,002 0,494 
 
Figure 3 visualizes the differences between the clusters: w(E1) compared with w(E2). It clearly 
shows that the evaluations of the total group of 20 decision makers are by far not 
homogenous. If we have a large number of decision makers, it might be wise to analyze the 
sample with an appropriate method. The AHP Cluster Analysis proposed herein could deliver 
more insights into the real meaning of the subjects’ evaluations as we get relatively 
homogenous subgroups.   
 

 
 
Figure 3: 4 Cluster solution – w(E1) vs. w(E2) 

 
4 Discussion and Summary 

This contribution described the analytical steps to group individual AHP evaluations into 
homogenous subgroups. This might be especially necessary in decision situations where we 
have a large number of decision makers with considerable differing evaluations. In our 
numerical example, we used a data set of 20 experimental cases. The results showed, that a 
number of different clusters could be identified. The aggregated results per cluster differed 
significantly. A discussion and further analysis on why there are these differences and what 
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are the consequences of this fact would complete the analytical results. In order to identify the 
difference between individual priorities of decision makers, we used the Squared Euclidean 
Distance. However, any other distance metrics could be used. An in-depth comparison with 
the present results could be an interesting future research application. Instead of distance 
metrics, similarity measures would be possible; in this case, maximum e.g. correlation must 
be searched within a similarity matrix. In all, we presented an easy to apply approach to 
analyze homogeneity within group decisions, which is of raising importance if the AHP is 
applied for group decisions with a large number of decision makers. 
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