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Highlights 

 Assessed the performance of four ensemble learning methods—Random Forest, 

AdaBoost, Gradient Boosting, and Decision Tree—in predicting construction 

progress. 

 Utilized the Public Construction Intelligence Cloud (PCIC) dataset to establish 

links between defect patterns and construction progress, providing a robust 

foundation for machine learning models. 

 Identified AdaBoost as the most effective classifier, achieving a precision, recall, 

and F1-score of 91.2%, showcasing its capability in handling multifaceted 

construction datasets. 

 Emphasized the value of ensemble learning for proactive construction 

management, enabling better defect detection and progress monitoring to enhance 

project outcomes. 

 

 

ABSTRACT 

The construction industry has historically faced challenges in predicting project progress 

and managing defects effectively. Traditional methods, such as statistical models, often 

produce biased results due to their reliance on predefined assumptions. In contrast, machine 

learning (ML) models offer significant advantages in handling complex datasets with 

multiple attributes. ML models can identify critical features that influence construction 

performance without being constrained by distribution or collinearity effects. This study 

leverages the extensive Public Construction Intelligence Cloud (PCIC) dataset, enabling 

ML models to uncover hidden patterns related to deficiencies and construction progress, 

thereby supporting decision-making in construction management. Supervised learning 

classifiers, including Decision Tree (DT), Random Forest (RF), AdaBoost, and Gradient 

Boosting, are employed to analyze data collected from construction sites. The findings 

indicate that ML models can identify correlations and trends within large datasets that 

traditional methods might overlook, thereby enhancing predictive capabilities and 

providing actionable insights for construction management. 
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Construction project documents, such as construction logs, contain significant information 

and implicit rules. These documents assist project managers in identifying the causes and 

effects of accidents or patterns within a project (Xu et al., 2019). Therefore, analyzing the 

extensive data recorded on-site for large-scale civil infrastructure projects and extracting 

critical features is essential for detecting damages. However, data availability and 

accessibility in the construction industry remain limited. Many records are still paper-based, 

and database systems are inconsistently utilized, leading to a lack of integrated and 

structured data sources (Delgado and Oyedele, 2021). Additionally, while the construction 

industry generates vast amounts of data, accessing this information is challenging due to 

issues such as inconsistent data structure, missing data, noise, and the high costs of data 

collection and preprocessing (Yan et al., 2020). These challenges are further exacerbated 

by the complexity of collection environments, limitations in data collection equipment, and 

human factors, all of which hinder the accuracy of quality data. Moreover, the scarcity of 

public data on construction quality makes it difficult to establish comprehensive data 

sources. Contractors and project owners may also hesitate or refuse to share quality records 

due to concerns about exposing sensitive information critical to their projects (Luo et al., 

2022). 

To address these limitations, this study utilized the construction inspection dataset 

from the Public Construction Intelligence Cloud (PCIC). Established by the Taiwanese 

government in 1933, the PCIC is designed to ensure the quality of public construction 

projects through standardized inspections. Experts and scholars perform on-site quality 

checks using standardized forms, and the results are digitized and stored within the PCIC. 

This ensures the accessibility and consistency of inspection data across various 

construction stages. Given the wealth of data stored in the PCIC, it is essential to analyze 

the relationship between defects and construction progress in-depth. Such analyses can 

guide the development of effective construction management strategies, ultimately 

improving construction quality and project outcomes. 

Construction project data often involve numerous variables and nonlinear 

characteristics, posing challenges for traditional statistical methods. These methods are 

prone to biased results when variables are highly correlated. In contrast, machine learning 

(ML) models excel at analyzing datasets with multiple attributes and can identify critical 

features without being affected by data distribution or collinearity (Uddin et al., 2022). ML 

enables a deeper understanding of complex construction data, allowing for more effective 

decision-making. By studying patterns within the data, ML models can build predictive 

frameworks or extract valuable insights, making them adaptable to various datasets 

(Ghoddusi et al., 2019). Leveraging ML for construction site data analysis offers 

opportunities to optimize performance across planning, design, safety, quality, scheduling, 

and cost management (Ajayi et al., 2019). With the availability of large-scale historical 

data, ML addresses scalability issues and enhances progress tracking and decision-making 

capabilities (Amer and Golparvar-Fard, 2021). 

To ensure timely and high-quality project completion, it is crucial to adopt advanced 

technologies for predicting construction progress. A thorough understanding of how 

deficiencies impact construction stages is key to achieving this goal. ML models excel at 

uncovering trends and correlations within large datasets that traditional methods might 

overlook, thereby enhancing predictive accuracy. These insights enable the development 

of actionable strategies for construction management, creating new value applications. By 

utilizing the extensive PCIC dataset, this study demonstrates how ML models can 

effectively learn hidden patterns in deficiencies and construction progress, ultimately 

supporting informed decision-making in construction management. 
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2. Research Method 

The supervised learning classifiers employed in this study include Decision Tree (DT), 

Random Forest (RF), AdaBoost, and Gradient Boosting. This section outlines the 

underlying principles of these classifiers and details the data preprocessing and processing 

steps specific to each classifier. 

2.1. Decision tree 

A Decision Tree (DT) is a tree-like structure introduced by Breiman et al. (1984), 

consisting of nodes, branches, and leaf nodes. Each internal node represents a feature (or 

attribute), each branch corresponds to a decision rule, and each leaf node denotes an 

outcome or class label. At each node, the DT selects the optimal splitting criterion—

typically a threshold for a feature—to maximize the purity of the resulting subsets with 

respect to the target variable. The goal is to group samples in a way that ensures each subset 

predominantly belongs to a single class, thereby enhancing differentiation. 

DTs commonly use measures such as entropy or Gini impurity to quantify impurity. 

For instance, entropy is zero when all instances in a subset belong to a single class, 

indicating maximum purity. A key advantage of DTs is their ability to capture non-linear 

relationships in data without relying on assumptions about its distribution. However, they 

are prone to overfitting, especially when the tree grows too deep, leading to overly complex 

models. Techniques such as pruning, which removes branches that contribute minimally to 

predictive performance, can effectively reduce overfitting. While DTs are simple and 

highly interpretable, their performance can be unstable, as small variations in the data may 

result in entirely different tree structures. This sensitivity underscores the importance of 

using DTs judiciously, particularly in scenarios where data variability is high. 

2.2. Random forest 

Random Forest (RF) is an ensemble learning method designed to address the limitations of 

individual decision trees by aggregating predictions from multiple trees to enhance 

accuracy and stability (Breiman, 2001). Each tree in an RF is constructed using a bootstrap 

sample of the original dataset, and at each node, splits are determined based on the best 

feature from a randomly selected subset rather than the overall best feature. This 

incorporation of randomness increases diversity among trees, thereby improving the 

model's robustness and generalization ability. 

RF combines individual tree predictions using majority voting for classification tasks 

or averaging for regression tasks. Since the construction of each tree is independent, RF is 

inherently robust against overfitting, particularly in large datasets. The method is notable 

for its adaptability, computational efficiency, and simplicity. Moreover, RF provides an 

internal estimate of its generalization error through out-of-bag (OOB) error estimation, 

which leverages the data samples excluded from the bootstrap process for validation. This 

feature makes RF a reliable and efficient choice for a wide range of machine learning 

applications. 

2.3. AdaBoost 

The weight assigned to each weak classifier is determined by its error rate, with higher 

weights given to classifiers that achieve lower errors. Through this mechanism, AdaBoost 

effectively handles complex datasets while reducing the risk of overfitting. Its adaptability 

allows it to perform well across various data distributions, making it a robust choice for 

diverse applications. The algorithm iteratively generates a series of sub-models. Initially, 

the first sub-model is trained on the original dataset. Afterward, the dataset is reweighted 
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based on the predictions of this sub-model, increasing the weights of misclassified samples 

and decreasing those of correctly classified ones. This process continues for a predefined 

number of iterations, creating distinct sub-models due to the varying sample weights during 

training. The final AdaBoost model aggregates the predictions of all sub-models using 

weighted voting, producing a comprehensive and powerful classification or regression 

outcome. 

2.4. Gradient Boosting 

The basic idea of Gradient Boosting is to sequentially generate multiple weak learners, 

each tasked with fitting the negative gradient of the loss function from the previous 

accumulated model. This process iteratively reduces the cumulative model loss in the 

direction of the negative gradient. In neural network training, gradient descent optimizes 

parameters by calculating the gradient of the loss function with respect to model parameters. 

Similarly, in Gradient Boosting, each weak learner fits the gradient of the loss function 

with respect to the accumulated model. The weak learner is then added to the accumulated 

model, gradually reducing its loss. 

Unlike AdaBoost, which adjusts sample weights to focus on misclassified data, 

Gradient Boosting minimizes the loss function directly through gradient descent. Each new 

model fits the residual error of the previous model, progressively improving predictions. 

The key strength of Gradient Boosting lies in its ability to focus on data points poorly 

handled by previous iterations. This iterative refinement enables Gradient Boosting to 

capture complex patterns and achieve high accuracy. While computationally intensive, it 

remains widely adopted for its superior predictive performance across classification and 

regression tasks. 

2.5. Data preprocessing and research process 

The PCIC dataset used in this study comprises data from 1,015 construction projects, with 

499 recorded defects distributed across four categories: Management (113 defects), Quality 

(356 defects), Schedule (10 defects), and Design (20 defects). Additionally, the dataset 

includes 6,615 defect frequencies and two categories of construction progress status: 

"ahead of schedule" and "behind schedule." This comprehensive dataset undergoes 

preprocessing to ensure it is suitable for training machine learning (ML) classifiers to 

predict construction progress effectively. 

The success of ML applications is heavily dependent on the quality of the input data. 

As highlighted by Na et al. (2023), the value derived from ML models is significantly 

influenced by the completeness, accuracy, and reliability of the data. High-quality training 

data ensures that learning objectives are achieved effectively (Alanne, 2021). For this study, 

the PCIC dataset provides a robust foundation for supervised learning, linking defect items 

(independent variables) with construction progress status (dependent variables). 

To predict construction progress, four ML classifiers are employed and evaluated 

using metrics such as confusion matrices, which provide insights into the models' accuracy 

and reliability. Supervised learning requires a well-structured dataset where independent 

variables are mapped to corresponding labels. Once training is complete, the models 

establish a predictive mapping, enabling them to infer progress status for unseen 

combinations of defect data (Alawadi et al., 2020). 

This study categorizes the progress of construction projects into two types based on a 

comparison of scheduled and actual progress. By leveraging ML classifiers to analyze 

defect data, the models offer actionable insights that support proactive decision-making. 

This capability is essential for addressing potential issues early, improving project 

management efficiency, and ensuring successful construction outcomes. 
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3. Results 

This study employs multiple ML classifiers, including Decision Trees (DT), Random 

Forest (RF), AdaBoost, and Gradient Boosting, to predict construction progress. The 

performance of these classifiers is evaluated using confusion matrix analysis, which 

provides a detailed breakdown of correct and incorrect predictions, offering insights into 

the model's strengths and weaknesses in different scenarios. The confusion matrix helps 

understand the distribution of true positives, false positives, true negatives, and false 

negatives, and can identify areas where the model may need improvement. For example, if 

the model frequently misclassifies certain progress stages or defect types, targeted data 

augmentation or model tuning could address these issues. Accuracy, a key metric for 

evaluating model performance, reflects the proportion of correct predictions. It is defined 

as the number of correctly predicted samples divided by the total number of samples, 

expressed as a percentage. Higher accuracy indicates better model performance in correctly 

identifying progress stages and defects. 

 

 
(a) DT (b) RF 

 
(c) AdaBoost 

 
(d) Gradient Boosting 

Fig. 1. Confusion matrices of four ML classifiers for construction progress. 
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Fig. 2. Accuracy of four ML classifiers for construction progress. 

Among the classifiers, AdaBoost stands out with its impressive classification 

performance, correctly predicting 279 instances of construction progress, as shown in Fig. 

1. This demonstrates AdaBoost's ability to handle complex data and make precise 

predictions, making it a valuable tool for construction project management. In conclusion, 

the use of these ML classifiers, particularly ensemble learning algorithms, shows 

significant promise in enhancing the accuracy and reliability of predictive models for 

construction project management. The findings highlight the potential of ML to provide 

actionable insights and improve decision-making in the construction industry. Fig. 2 

presents the accuracy of the four ML classifiers used in this study. The results indicate that 

ensemble learning algorithms (RF, AdaBoost, and Gradient Boosting) perform 

exceptionally well, achieving an average accuracy of 90.38% for construction progress. 

This high level of accuracy underscores the robustness of ensemble methods in aggregating 

the predictive power of multiple models to improve overall performance. 

The most important consideration in model development is to evaluate its 

performance in an unbiased manner. To achieve this, the dataset is split into two parts: a 

training set, which comprises 70% of the data, and a testing set, which comprises the 

remaining 30%. The training set is used for model development, allowing the algorithm to 

learn from the data, while the testing set is reserved for performance evaluation, providing 

an unbiased assessment of how well the model generalizes to unseen data. Training and 

testing are essential processes in implementing supervised ML techniques. They ensure 

that the model's predictive capabilities are rigorously tested and validated. During the 

training phase, the model learns the underlying patterns and relationships within the data, 

while in the testing phase, its performance is evaluated using various metrics to determine 

accuracy and reliability. 

In this study, AdaBoost achieves the best prediction results in terms of construction 

progress, demonstrating superior performance across multiple evaluation metrics. 

Specifically, AdaBoost attains a Precision of 91.2%, a Recall of 91.2%, and an F1-score of 

0.912, as detailed in Table 1. Precision measures the proportion of true positive predictions 

among all positive predictions, Recall measures the proportion of true positives identified 

correctly out of all actual positives, and the F1-score provides the harmonic mean of 
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Precision and Recall, offering a balanced measure of the model's performance. Table 1 

summarizes the performance evaluation of the four ML classifiers for predicting 

construction progress. Each classifier's performance is quantified using Precision, Recall, 

and F1-score. DT achieved a Precision of 77.4%, a Recall of 77.2%, and an F1-score of 

0.773. RF demonstrated stronger performance with a Precision of 89.7%, a Recall of 88.6%, 

and an F1-score of 0.891. Gradient Boosting also showed high performance, with a 

Precision of 90.0%, a Recall of 89.7%, and an F1-score of 0.898. 

The superior performance of AdaBoost highlights its effectiveness in handling the 

complexities of construction progress data. Its ability to combine weak classifiers to form 

a strong classifier results in enhanced predictive accuracy. The evaluation metrics 

underscore the robustness of AdaBoost, making it a reliable tool for construction project 

management. Furthermore, these performance metrics are crucial for identifying the 

strengths and weaknesses of each model. For instance, while DTs may be simpler and faster, 

their lower Precision and Recall compared to ensemble methods like RF and AdaBoost 

suggest they may not be as effective for this specific application. In contrast, the higher 

scores of ensemble methods indicate their ability to capture more intricate patterns within 

the data, leading to better generalization and prediction accuracy. 

Through the rigorous analysis and tuning of ML algorithms, this study highlights the 

transformative potential of ML in addressing complex construction prediction challenges. 

It emphasizes how advanced ML techniques can be leveraged to enhance project 

management practices, offering a path toward more efficient and successful construction 

project execution. 

Table 1. Performance evaluation of the four ML classifiers for construction progress. 

Machine learning Precision Recall F1-score 

DT 0.774 0.772 0.773 

RF 0.897 0.886 0.891 

AdaBoost 0.912 0.912 0.912 

Gradient Boosting 0.90 0.897 0.898 

 

4. Conclusion 

ML is fundamentally a data-driven field that relies heavily on large volumes of training 

data to achieve optimal performance for practical deployment. The essence of ML lies in 

its ability to construct predictive models based on experience and patterns observed in data. 

These models are built by computers using various algorithms and are designed to perform 

predictive analytics across a wide range of domains. In the field of project management, 

ML techniques are frequently employed to analyze project data, identify patterns, and 

generate predictions that support decision-making processes. Specifically, ML integrates 

concepts from computer science, statistics, and data science to tackle complex prediction 

tasks. This integration allows ML to provide substantial insights and support evidence-

based decision-making by uncovering patterns and relationships within data that may not 

be apparent through traditional methods. 
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In this study, the construction inspection dataset from the PCIC is utilized to enhance 

ML model performance. This process involves hyperparameter tuning and training across 

four different ML algorithms to develop optimal prediction models. The primary goal is to 

construct models that can accurately forecast construction progress based on the dataset, 

which includes a diverse array of defect items and associated frequencies. The results of 

the study reveal that the AdaBoost algorithm exhibits superior performance in predicting 

construction progress, achieving an impressive accuracy rate of 91.2%. AdaBoost, an 

ensemble learning method that combines multiple weak classifiers to form a robust 

predictive model, demonstrates its effectiveness in handling the complexities of 

construction data. 

The insights gained from ML models are instrumental for project managers, as they 

enable them to better identify significant defects and potential issues through detailed 

analysis of prediction errors. By understanding the nature of these errors, managers can 

implement more effective construction management strategies, ensuring that projects 

adhere to schedules and meet quality standards. The application of ML in construction 

project management not only enhances the accuracy of progress predictions but also 

supports more informed decision-making, ultimately leading to improved project outcomes. 
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