

ISAHP 2024 WORKSHOP 1

Mastering AHP Models in Python: Setup, Calculation, and Sensitivity Analysis with AppAnpLib

• Goal:

✓ Setup the environment to use AnpAnpLib python library✓ Learn how to use AhpAnpLib

• What will be covered?

o How to use AhpAnpLib in Google Colab? (setting up the environment)
o How to structure an AHP model in Excel?

How to import model from Excel using Python?

• How to conduct basic **sensitivity analysis** using AhpAnpLib?

□How to repurpose **SuperDecisions** model in Python?

• Q&A / Troubleshooting

WHAT IS AHPANPLIB?

• AhpAnpLib: a Python library developed by CDF to assist in the process of structuring models using the Analytic Hierarchy Process/Analytic Network Process.

https://pypi.org/project/AhpAnpLib/

Search projects	۹	Help Sponsors Log in Register					
AhpAnpLib 2.4.	14 •	Latest version Released: Feb 26, 2024					
Analytic Hierarchy Process (AHP) and	d Analytic Network Process (ANP) Library						
Navigation	Project description						
 Release history Download files 	The author of this package has not provided	a project description					
Verified details These details have been <u>verified by PyPI</u> Maintainers erokou	•License: M •Author: Cr	•License: MIT •Author: Creative Decisions Foundation					

SETTING UP THE ENVIRONMENT

• Open Google Colab in your browser CO

https://colab.research.google.com/

• Ensure you are **signed in** with your Google account

STRUCTURING AN AHP MODEL WITH EXCEL

OptiCorp is a **mid-sized technology consulting firm** specializing in **business optimization solutions** through custom software and AI tools.

The company has been expanding rapidly, and with its current lease ending, OptiCorp is in the process of selecting a new office location to accommodate its growth and improve its operational efficiency.

OptiCorp's employee base is highly skilled, with many employees working on-site and others needing a flexible workspace due to remote and hybrid work arrangements.

Office Location Alternatives:

STRUCTURING AN AHP MODEL WITH EXCEL

IMPORTING MODEL FROM EXCEL USING PYTHON

• 1. Uploading the Excel file to Google Drive

🛆 Drive	Q Sea	arch in Drive		主				?	ŝ		
+ New	My Dr	rive > Colab Notebooks -				~	Ē	88	\sum	()	31
• New folder	^C then F	elected 😂 达 🗊 🗇 🗄									
File upload	^C then U	ew! Keyboard shortcuts Drive keyboard shortcuts have been updated to give you first-letters navigation						ortcut	s I	×	Ø
Folder upload	^C then I	¥	Owner	Last modified by me 🔻	File size					:	
 Google Docs Google Sheets 	> >	Site selection_AHP.ipynb	🔊 me	2:20 PM	213 KB					:	•
Google Slides	•	site selection case.xlsx	🚯 me	Sep 23, 2024	11 KB	<u>۴</u>	₹	1_	☆	:	+
Google Forms More	> >	Example_AHP.ipynb	🚯 me	2:11 PM	1 KB					:	
	0 00	Copy of AHP Ratings_LunchExample.ipynb	🐠 me	Sep 14, 2023	30 KB					:	

🛆 Example_AHP_import.ipynb 🛛 🖈

New Code Cell

from google.colab import drive drive.mount('/content/drive', force remount=True) #read structure from Excel input.readStructFromExcel(location,"/content/drive/My Drive/Colab Notebooks/site selection case.xlsx", "structure", False) #read connections from Excel input.readConnectionsFromExcel (location, "/content/drive/My Drive/Colab Notebooks/site selection case.xlsx", "connection", False) verb: whether to display the import details - "False": no details will be displayed Model variable Excel file name Sheet name in the Excel that has the model structure/node connections

3. Generate a questionnaire to collect judgments

Generate Excel questionnaire New Code Cell #print model structure location.printStruct() #export excel questionnaire input.export4ExcelQuestFull(location, "/content/drive/My Drive/Colab Notebooks/AHP Site selection Excel questionnaire_empty.xlsx", True) show_estimates ? include a Questionnaire file model variable column for each pairwise path and name comparison matrix with an estimate of the priorities?

HR Manager											
Enter pairwise comparisons in the white cells of the table or numerical data in the green cells. For the Direct Values column, if the smallest value is bost, invert the value											
Criteria	Cost	Location	Infrastructure	Employee Satisfaction	Direct values	Line Sum	Estimated Priority				
Cost	1	0.5	0.5	0.142857143		2.1	4 0.07				
Location	2	1	1	0.2		4. <mark>2</mark> 0	0.14				
Infrastructure	2	1	1	0.142857143		4.1	4 0.14				
Employee Satisfaction	7	5	7	1		20.0	0.66				
Sum of Col	12.00	7.50	9.50	1.49		30.4	Ð				
						Est. Incons.	0.05				
Cost											

True: include the estimated priorities column False: do not include it By default, it is False if the parameter is omitted in the command

• 5. Use filled-in excel questionnaire to calculate the results

normalbar=False, idealbar=True, verbal=False

PERFORMING SENSITIVITY ANALYSIS

STEPS

1. Install AhpAnpLib 2. Import Library 3. Create Model Str.Model 4. Create Excel file with Model structure (Clusters, nodes and connections) Input.readStructFromExcel 5. Read structure from excel to python using commands Input.readConnectionsFromExcel 6. Generate an Excel questionnaire to collect judgments input.export4ExcelQuestFull 7. Collect judgments in a new Excel file using the generated questionnaire 8. import the filledin Excel questionnaire and use it to calculate results **calc.calcAHPMatricesSave2File**

9. Perform sensitivity analysis

calc.sensitivityCellSupermatrixPlot

FULL PYTHON CODE

!pip install AhpAnpLib

from AhpAnpLib import structs_AHPLib as str from AhpAnpLib import inputs_AHPLib as input from AhpAnpLib import calcs_AHPLib as calc from AhpAnpLib import ratings_AHPLib as rate

#create model
location=str.Model("Site selection")

from google.colab import drive drive.mount('/content/drive', force_remount=True) #read structure from Excel input.readStructFromExcel(location,"/content/drive/My Drive/Colab Notebooks/site selection case.xlsx","structure",False) #read connections from Excel input.readConnectionsFromExcel(location,"/content/drive/My Drive/Colab Notebooks/site selection case.xlsx","connection",False) #print model structure location.printStruct()

#export excel questionnaire

input.export4ExcelQuestFull(location,"/content/drive/My Drive/Colab Notebooks/AHP_Site_selection_Excel_questionnaire_empty.xlsx",True) # import my questionnaire and import back to python libarary calc.calcAHPMatricesSave2File(location,"/content/drive/My Drive/Colab/Notebooks/AHP_Site_selection_Excel_questionnaire_filledin.xlsx","/content/drive/My Drive/Colab/Notebooks/AHP_Site_selection_Excel_questionnaire_results.xlsx",True,False,True)

#sensitivity analysis

calc.sensitivityCellSupermatrixPlot(location, "Alternatives", "/content/drive/My Drive/Colab Notebooks/AHP_Site_selection_Excel_questionnaire_results.xlsx", False, "Cost", "Location", "Infrastructure", "Employee Satisfaction")

Importing structure and judgments from given SuperDecisions file (.sdmod)

New Jupyter notebook

verb: whether to display the calculation details – "False": no details will be displayed

Whether to generate a python file that contains the commands of creating the model using python. True: A Python file will be generated

By default, it is False and will not generate a Python file

Download more examples from: <u>HTTPS://GITHUB.COM/CREATIVEDECISIONS/AHPANPLIB/TREE/MAIN/EXAMPLES</u>

Check more videos on CDF YouTube channel: <u>HTTPS://YOUTUBE.COM/PLAYLIST?LIST=PL_J2C3IKVYPVPVP6PUTNLVPKD-</u> <u>MIXHEER&SI=DQLG0BBJPPXHOTSH</u>

Check CDF resources: <u>HTTPS://WWW.CREATIVEDECISIONS.NET/RESOURCES/</u>

Q&A / TROUBLESHOOTING

weileerong@foxmail.com